中国电力 ›› 2024, Vol. 57 ›› Issue (9): 32-43.DOI: 10.11930/j.issn.1004-9649.202312067
• 面向电力基础设施的跨域攻击威胁与防御 • 上一篇 下一篇
收稿日期:
2023-12-17
接受日期:
2024-04-12
出版日期:
2024-09-28
发布日期:
2024-09-23
作者简介:
朱卫平(1983—),男,博士,高级工程师,从事电力监控系统网络研究,E-mail:1162146433@qq.com基金资助:
Weiping ZHU1(), Yi TANG2(
), Xingshen WEI3(
), Zengji LIU2(
)
Received:
2023-12-17
Accepted:
2024-04-12
Online:
2024-09-28
Published:
2024-09-23
Supported by:
摘要:
大规模电力电子设备的接入为系统引入了数量庞大的强非线性量测/控制节点,使得传统电力系统逐渐转变为电力信息物理系统(cyber-physical system,CPS),许多原本应用模型驱动方法解决的系统问题不得不因维度灾难等局限转而采取数据驱动算法进行分析。然而,数据驱动算法自身的缺陷为系统的安全稳定运行引入了新的风险,攻击者可以对其加以利用,发起可能引发系统停电甚至失稳的对抗攻击。针对电力CPS中数据驱动算法可能遭受的对抗攻击,从异常数据剔除与恢复、算法漏洞挖掘与优化、算法自身可解释性提升3个方面,提出了对应的防御方法:异常数据过滤器、基于生成式对抗网络(generative adversarial network,GAN)的漏洞挖掘与优化方法、数据-知识融合模型及其训练方法,并经算例分析验证了所提方法的有效性。
朱卫平, 汤奕, 魏兴慎, 刘增稷. 针对电力CPS数据驱动算法对抗攻击的防御方法[J]. 中国电力, 2024, 57(9): 32-43.
Weiping ZHU, Yi TANG, Xingshen WEI, Zengji LIU. Defense Methods for Adversarial Attacks Against Power CPS Data-Driven Algorithms[J]. Electric Power, 2024, 57(9): 32-43.
预测系统稳定 数据驱动算法 | 不接入过滤器 | 接入过滤器 | ||||||
无攻击 | 有攻击 | 无攻击 | 有攻击 | |||||
AlexNet | 98.75 | 56.0 | 97.0 | 92.8 | ||||
VGG16 | 98.75 | 40.0 | 94.8 | 89.8 | ||||
ResNet | 99.25 | 72.0 | 97.5 | 94.2 | ||||
InceptionV3 | 98.50 | 74.0 | 96.0 | 91.8 |
表 1 数据驱动算法输出准确率对比
Table 1 Comparison of output accuracy of data-driven algorithms 单位:%
预测系统稳定 数据驱动算法 | 不接入过滤器 | 接入过滤器 | ||||||
无攻击 | 有攻击 | 无攻击 | 有攻击 | |||||
AlexNet | 98.75 | 56.0 | 97.0 | 92.8 | ||||
VGG16 | 98.75 | 40.0 | 94.8 | 89.8 | ||||
ResNet | 99.25 | 72.0 | 97.5 | 94.2 | ||||
InceptionV3 | 98.50 | 74.0 | 96.0 | 91.8 |
模型类型 | 数据驱动算法 | 鲁棒性指标 | ||
数据驱动模型 | ELM | |||
AlexNet | ||||
SqueezeNet | ||||
初始融合模型 | IEEAC+ELM | |||
IEEAC+AlexNet | ||||
IEEAC+SqueezeNet | ||||
完备融合模型 | IEEAC+ELM | |||
IEEAC+AlexNet | ||||
IEEAC+SqueezeNet |
表 2 不同模型在对抗攻击下的鲁棒性指标
Table 2 Robustness metrics of different models under adversarial attacks
模型类型 | 数据驱动算法 | 鲁棒性指标 | ||
数据驱动模型 | ELM | |||
AlexNet | ||||
SqueezeNet | ||||
初始融合模型 | IEEAC+ELM | |||
IEEAC+AlexNet | ||||
IEEAC+SqueezeNet | ||||
完备融合模型 | IEEAC+ELM | |||
IEEAC+AlexNet | ||||
IEEAC+SqueezeNet |
1 | 汤奕, 崔晗, 李峰, 等. 人工智能在电力系统暂态问题中的应用综述[J]. 中国电机工程学报, 2019, 39 (1): 2- 13, 315. |
TANG Yi, CUI Han, LI Feng, et al. Review on artificial intelligence in power system transient stability analysis[J]. Proceedings of the CSEE, 2019, 39 (1): 2- 13, 315. | |
2 | 李峰, 王琦, 胡健雄, 等. 数据与知识联合驱动方法研究进展及其在电力系统中应用展望[J]. 中国电机工程学报, 2021, 41 (13): 4377- 4390. |
LI Feng, WANG Qi, HU Jianxiong, et al. Combined data-driven and knowledge-driven methodology research advances and its applied prospect in power systems[J]. Proceedings of the CSEE, 2021, 41 (13): 4377- 4390. | |
3 | 黄书民, 蒋林高, 李志川, 等. 基于PSO寻优与DBN神经网络的电晕损耗预测[J]. 中国电力, 2022, 55 (6): 95- 102, 214. |
HUANG Shumin, JIANG Lingao, LI Zhichuan, et al. Corona loss prediction of UHV AC transmission line based on DBN neural network optimized by PSO[J]. Electric Power, 2022, 55 (6): 95- 102, 214. | |
4 | 李丰君, 王磊, 赵健, 等. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55 (11): 149- 154. |
LI Fengjun, WANG Lei, ZHAO Jian, et al. Research on distributed photovoltaic short-term power prediction method based on weather fusion and LSTM-net[J]. Electric Power, 2022, 55 (11): 149- 154. | |
5 | 杨胡萍, 余阳, 汪超, 等. 基于VMD-CNN-BIGRU的电力系统短期负荷预测[J]. 中国电力, 2022, 55 (10): 71- 76. |
YANG Huping, YU Yang, WANG Chao, et al. Short-term load forecasting of power system based on VMD-CNN-BIGRU[J]. Electric Power, 2022, 55 (10): 71- 76. | |
6 | 杨朋朋, 王蓓蓓, 胥鹏, 等. 不完全信息下基于深度双Q网络的发电商三段式竞价策略[J]. 中国电力, 2021, 54 (11): 47- 58. |
YANG Pengpeng, WANG Beibei, XU Peng, et al. Three-stage bidding strategy of generation company based on double deep Q-network under incomplete information condition[J]. Electric Power, 2021, 54 (11): 47- 58. | |
7 |
YU J J Q, HOU Y H, LI V O K. Online false data injection attack detection with wavelet transform and deep neural networks[J]. IEEE Transactions on Industrial Informatics, 2018, 14 (7): 3271- 3280.
DOI |
8 | 王健, 易姝慧, 刘俊杰, 等. 基于随机森林算法和稳态波形的非介入式工业负荷辨识[J]. 中国电力, 2022, 55 (2): 82- 89. |
WANG Jian, YI Shuhui, LIU Junjie, et al. Non-intrusive industrial load identification based on random forest algorithm and steady-state waveform[J]. Electric Power, 2022, 55 (2): 82- 89. | |
9 | 严宇, 刘天琪. 基于决策表-粗糙集理论的动态安全分析神经网络输入特征优选[J]. 电力系统自动化, 2004, 28 (15): 25- 29. |
YAN Yu, LIU Tianqi. Ann injection features optimization of dynamic security analysis based on decision tables-rough set theory[J]. Automation of Electric Power Systems, 2004, 28 (15): 25- 29. | |
10 |
ZHANG Y, KRISHNAN V V G, PI J, et al. Cyber physical security analytics for transactive energy systems[J]. IEEE Transactions on Smart Grid, 2020, 11 (2): 931- 941.
DOI |
11 |
QU Y Y, POKHREL S R, GARG S, et al. A blockchained federated learning framework for cognitive computing in industry 4.0 networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (4): 2964- 2973.
DOI |
12 |
GOLDBLUM M, TSIPRAS D, XIE C, et al. Dataset security for machine learning: data poisoning, backdoor attacks, and defenses[J]. IEEE Trans Pattern Anal Mach Intell, 2023, 45 (2): 1563- 1580.
DOI |
13 | NIAZAZARI I, LIVANI H. Attack on grid event cause analysis: an adversarial machine learning approach[C]//2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). Washington, DC, USA. IEEE, 2020: 1–5. |
14 |
REN C, DU X N, XU Y, et al. Vulnerability analysis, robustness verification, and mitigation strategy for machine learning-based power system stability assessment model under adversarial examples[J]. IEEE Transactions on Smart Grid, 2022, 13 (2): 1622- 1632.
DOI |
15 |
PAUL S, NI Z, MU C X. A learning-based solution for an adversarial repeated game in cyber–physical power systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31 (11): 4512- 4523.
DOI |
16 | TIAN J W, WANG B H, WANG Z, et al. Joint adversarial example and false data injection attacks for state estimation in power systems[J]. IEEE Transactions on Cybernetics, 2022, 52 (12): 13699- 13713. |
17 |
SU J W, VARGAS D V, SAKURAI K. One pixel attack for fooling deep neural networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23 (5): 828- 841.
DOI |
18 | GOSWAMI G, AGARWAL A, RATHA N, et al. Detecting and mitigating adversarial perturbations for robust face recognition[J]. International Journal of Computer Vision, 2019, 127 (6/7): 719- 742. |
19 | JIN G Q, SHEN S W, ZHANG D M, et al. APE-GAN: adversarial perturbation elimination with GAN[C]//2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Brighton, United Kingdom. IEEE, 2019: 3842–3846. |
20 | LIAO F Z, LIANG M, DONG Y P, et al. Defense against adversarial attacks using high-level representation guided denoiser[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT. IEEE, 2018: 1778–1787. |
21 | CHIANG P Y, GEIPING J, GOIDBUIM M, et al. Witchcraft: Efficient PGD attacks with random step size[C]//2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain. IEEE, 2020: 3747–3751. |
22 |
WENG J, LUO Z, LI S, et al. Logit margin matters: Improving transferable targeted adversarial attack by logit calibration[J]. IEEE Transactions on Information Forensics and Security, 2023, 18, 3561- 3574.
DOI |
23 |
HEO B, LEE M, YUN S, et al. Knowledge distillation with adversarial samples supporting decision boundary[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 3771- 3778.
DOI |
24 | TIAN J W, LI T Y, SHANG F T, et al. Adaptive normalized attacks for learning adversarial attacks and defenses in power systems[C]//2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). Beijing, China. IEEE, 2019: 1–6. |
25 |
TIAN J W, WANG B H, LI J, et al. Adversarial attacks and defense for CNN based power quality recognition in smart grid[J]. IEEE Transactions on Network Science and Engineering, 2022, 9 (2): 807- 819.
DOI |
26 |
REN C, XU Y. A universal defense strategy for data-driven power system stability assessment models under adversarial examples[J]. IEEE Internet of Things Journal, 2023, 10 (9): 7568- 7576.
DOI |
27 | HUANG R, LI Y C. Adversarial attack mitigation strategy for machine learning-based network attack detection model in power system[J]. IEEE Transactions on Smart Grid, 2023, 14 (3): 2367- 2376. |
28 | 黄冬梅, 丁仲辉, 胡安铎, 等. 低成本对抗性隐蔽虚假数据注入攻击及其检测方法[J]. 电网技术, 2023, 47 (4): 1531- 1540. |
HUANG Dongmei, DING Zhonghui, HU Anduo, et al. Low-cost adversarial stealthy false data injection attack and detection method[J]. Power System Technology, 2023, 47 (4): 1531- 1540. | |
29 | ATHAY T, PODMORE R, VIRMANI S. A practical method for the direct analysis of transient stability[J]. IEEE Transactions on Power Apparatus Systems, 1979, 98 (2): 573- 584. |
30 | LI F, WANG Q, TANG Y, et al. An integrated method for critical clearing time prediction based on a model-driven and ensemble cost-sensitive data-driven scheme[J]. International Journal of Electrical Power & Energy Systems, 2021, 125, 106513. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||