中国电力 ›› 2024, Vol. 57 ›› Issue (9): 32-43.DOI: 10.11930/j.issn.1004-9649.202312067

• 面向电力基础设施的跨域攻击威胁与防御 • 上一篇    下一篇

针对电力CPS数据驱动算法对抗攻击的防御方法

朱卫平1(), 汤奕2(), 魏兴慎3(), 刘增稷2()   

  1. 1. 国网江苏省电力有限公司,江苏 南京 210024
    2. 东南大学 电气工程学院,江苏 南京 211189
    3. 南瑞集团有限公司(国网电力科学研究院有限公司),江苏 南京 211106
  • 收稿日期:2023-12-17 接受日期:2024-04-12 出版日期:2024-09-28 发布日期:2024-09-23
  • 作者简介:朱卫平(1983—),男,博士,高级工程师,从事电力监控系统网络研究,E-mail:1162146433@qq.com
    汤奕(1977—),男,通信作者,博士,教授,博士生导师,从事电力系统稳定分析与控制、电力信息物理系统、人工智能在电力系统中的应用研究,E-mail:tangyi@seu.edu.cn
    魏兴慎(1986—),男,硕士,高级工程师,从事电力监控系统网络安全研究,E-mail:weixingshen@sgepri.sgcc.com.cn
    刘增稷(1993—),男,博士,讲师,从事电力信息物理系统、网络安全相关研究,E-mail:liuzengji@seu.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(面向新型配电系统的网络安全动态防御关键技术深化研究,5400-202340217A-1-1-ZN)。

Defense Methods for Adversarial Attacks Against Power CPS Data-Driven Algorithms

Weiping ZHU1(), Yi TANG2(), Xingshen WEI3(), Zengji LIU2()   

  1. 1. State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210024, China
    2. School of Electrical Engineering, Southeast University, Nanjing 211189, China
    3. NARI Group Corporation (State Grid Electric Power Research Institute), Nanjing 211106, China
  • Received:2023-12-17 Accepted:2024-04-12 Online:2024-09-28 Published:2024-09-23
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Further Research on Key Technologies of Network Security Dynamic Defense for New Distribution Systems, No.5400-202340217A-1-1-ZN).

摘要:

大规模电力电子设备的接入为系统引入了数量庞大的强非线性量测/控制节点,使得传统电力系统逐渐转变为电力信息物理系统(cyber-physical system,CPS),许多原本应用模型驱动方法解决的系统问题不得不因维度灾难等局限转而采取数据驱动算法进行分析。然而,数据驱动算法自身的缺陷为系统的安全稳定运行引入了新的风险,攻击者可以对其加以利用,发起可能引发系统停电甚至失稳的对抗攻击。针对电力CPS中数据驱动算法可能遭受的对抗攻击,从异常数据剔除与恢复、算法漏洞挖掘与优化、算法自身可解释性提升3个方面,提出了对应的防御方法:异常数据过滤器、基于生成式对抗网络(generative adversarial network,GAN)的漏洞挖掘与优化方法、数据-知识融合模型及其训练方法,并经算例分析验证了所提方法的有效性。

关键词: 对抗攻击, 数据驱动算法, 电力CPS, 攻击防御

Abstract:

The integration of large-scale power electronic devices has introduced a large number of strong nonlinear measurement/control nodes into the system, gradually transforming the traditional power system into a cyber physical system (CPS). Many system problems that were originally solved by model-driven methods have had to be analyzed using data-driven algorithms due to limitations such as dimensional disasters. However, the inherent flaws of data-driven algorithms introduce new risks to the safe and stable operation of the system, which attackers can exploit to launch adversarial attacks that may cause system power outages and even instability. In response to the potential adversarial attacks on data-driven algorithms in power CPS, this paper proposes corresponding defense methods from such three aspects as abnormal data filtering and recovery, algorithm vulnerability mining and optimization, and algorithm self interpretability improvement: abnormal data filter, GAN-based vulnerability mining and optimization method, data knowledge fusion model and its training method. The effectiveness of the proposed method is verified through case analysis.

Key words: adversarial attacks, data-driven algorithms, power CPS, attack defense