中国电力 ›› 2024, Vol. 57 ›› Issue (9): 181-193.DOI: 10.11930/j.issn.1004-9649.202309031
王安宁1(), 范荣奇1, 张旸2(
), 刘嘉超3, 胡薇3, 钟世民3, 贾科2
收稿日期:
2023-09-07
出版日期:
2024-09-28
发布日期:
2024-09-23
作者简介:
王安宁(1980—),女,硕士,高级工程师,从事电力系统继电保护研究,E-mail:wanganning@sd.sgcc.com.cn基金资助:
Anning WANG1(), Rongqi FAN1, Yang ZHANG2(
), Jiachao LIU3, Wei HU3, Shimin ZHONG3, Ke JIA2
Received:
2023-09-07
Online:
2024-09-28
Published:
2024-09-23
Supported by:
摘要:
高比例新能源接入下新型配电系统故障特性发生显著变化,运行方式多变、短路电流受限。电弧类早期故障是系统发生短路前的征兆,通过提前对早期故障的有效识别能够避免新型配电系统短路故障难以隔离的问题。首先,建立了早期故障的电气量与温度量定量解析模型,通过理论分析指出仅依靠单一的电气量或温度量均难以实现可靠的检测;然后,综合电信号的快速性和热信号的高灵敏性和可靠性,将电弧功率作为复合特征量来判别早期故障,提出了结合电流量与温度量的早期故障检测方法;最后,通过PSCAD仿真、现场数据及实验室模拟故障试验证明了该方法的有效性。
王安宁, 范荣奇, 张旸, 刘嘉超, 胡薇, 钟世民, 贾科. 基于多特征量判据的新型配电系统早期故障检测[J]. 中国电力, 2024, 57(9): 181-193.
Anning WANG, Rongqi FAN, Yang ZHANG, Jiachao LIU, Wei HU, Shimin ZHONG, Ke JIA. Multiple Characteristics Criterion Based Incipient Fault Detection of Distribution Systems[J]. Electric Power, 2024, 57(9): 181-193.
线路类型 | R1 | C1 | L1 | R0 | C0 | L0 | ||||||
架空线 | ||||||||||||
电缆 |
表 1 配网模型线路参数
Table 1 Distribution model line parameters 单位:Ω/km
线路类型 | R1 | C1 | L1 | R0 | C0 | L0 | ||||||
架空线 | ||||||||||||
电缆 |
结构 | 材料 | 参数 | 数值 | |||
缆芯 | 铜 | 厚度/半径(D1)/mm | 30.3 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | ||||||
相对介电常数(ε1) | 1 | |||||
导热系数(y1)/(W·(m·K)–1) | 30.1 | |||||
密度(rho1)/(kg·m–3) | ||||||
恒压热容(C1)/(J·(kg·K)–1) | 385 | |||||
导体 屏蔽层 | 半导体 混合物 | 厚度/半径(D1)/μm | 0.85 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | 2 | |||||
相对介电常数(ε1) | 2.25 | |||||
导热系数(y1)/(W·(m·K)–1) | 10 | |||||
密度(rho1)/(kg·m–3) | ||||||
恒压热容(C1)/(J·(kg·K)–1) | ||||||
绝缘层 | 交联 聚乙烯 | 厚度/半径(D1)/mm | 19.5 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | 10–18 | |||||
相对介电常数(ε1) | 2.5 | |||||
导热系数(y1)/(W·(m·K)–1) | 0.46 | |||||
密度(rho1)/(kg·m–3) | 930 | |||||
恒压热容(C1)/(J·(kg·K)–1) | ||||||
绝缘 屏蔽层 | 半导体 混合物 | 厚度/半径(D1)/μm | 0.85 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | 2 | |||||
相对介电常数(ε1) | 2.25 | |||||
导热系数(y1)/(W·(m·K)–1) | 10 | |||||
密度(rho1)/(kg·m–3) | ||||||
恒压热容(C1)/(J·(kg·K)–1) | ||||||
金属层 | 铝 | 厚度/半径(D1)/mm | 2.50 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | 3.774×107 | |||||
相对介电常数(ε1) | 1 | |||||
导热系数(y1)/(W·(m·K)–1) | 238 | |||||
密度(rho1)/(kg·m–3) | ||||||
恒压热容(C1)/(J·(kg·K)–1) | 900 | |||||
外护层 | 聚乙烯 | 厚度/半径(D1)/mm | 2.90 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | 10–18 | |||||
相对介电常数(ε1) | 2.5 | |||||
导热系数(y1)/(W·(m·K)–1) | 0.46 | |||||
密度(rho1)/(kg·m–3) | 935 | |||||
恒压热容(C1)/(J·(kg·K)–1) |
表 2 XLPE电缆几何与材料参数
Table 2 Geometric and material parameter of XLPE cable
结构 | 材料 | 参数 | 数值 | |||
缆芯 | 铜 | 厚度/半径(D1)/mm | 30.3 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | ||||||
相对介电常数(ε1) | 1 | |||||
导热系数(y1)/(W·(m·K)–1) | 30.1 | |||||
密度(rho1)/(kg·m–3) | ||||||
恒压热容(C1)/(J·(kg·K)–1) | 385 | |||||
导体 屏蔽层 | 半导体 混合物 | 厚度/半径(D1)/μm | 0.85 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | 2 | |||||
相对介电常数(ε1) | 2.25 | |||||
导热系数(y1)/(W·(m·K)–1) | 10 | |||||
密度(rho1)/(kg·m–3) | ||||||
恒压热容(C1)/(J·(kg·K)–1) | ||||||
绝缘层 | 交联 聚乙烯 | 厚度/半径(D1)/mm | 19.5 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | 10–18 | |||||
相对介电常数(ε1) | 2.5 | |||||
导热系数(y1)/(W·(m·K)–1) | 0.46 | |||||
密度(rho1)/(kg·m–3) | 930 | |||||
恒压热容(C1)/(J·(kg·K)–1) | ||||||
绝缘 屏蔽层 | 半导体 混合物 | 厚度/半径(D1)/μm | 0.85 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | 2 | |||||
相对介电常数(ε1) | 2.25 | |||||
导热系数(y1)/(W·(m·K)–1) | 10 | |||||
密度(rho1)/(kg·m–3) | ||||||
恒压热容(C1)/(J·(kg·K)–1) | ||||||
金属层 | 铝 | 厚度/半径(D1)/mm | 2.50 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | 3.774×107 | |||||
相对介电常数(ε1) | 1 | |||||
导热系数(y1)/(W·(m·K)–1) | 238 | |||||
密度(rho1)/(kg·m–3) | ||||||
恒压热容(C1)/(J·(kg·K)–1) | 900 | |||||
外护层 | 聚乙烯 | 厚度/半径(D1)/mm | 2.90 | |||
相对磁导率(W1) | 1 | |||||
电导率(S1)/(S·m–1) | 10–18 | |||||
相对介电常数(ε1) | 2.5 | |||||
导热系数(y1)/(W·(m·K)–1) | 0.46 | |||||
密度(rho1)/(kg·m–3) | 935 | |||||
恒压热容(C1)/(J·(kg·K)–1) |
过渡电 阻/Ω | 特征电 压/kV | 故障 位置 | 功率 Qf/kW | 检测值 | 检测精度 (Qf–Q)/Qf | 结果 | ||||||||
Q/kW | x/rad | |||||||||||||
1.0 | B | 5.30 | 5.240 | 0.15 | 1.13% | √ | ||||||||
2.0 | C | 8.60 | 7.370 | 1.61 | 14.30% | √ | ||||||||
2000 | 0.5 | D | 1.50 | 1.350 | 2.88 | 10.00% | √ | |||||||
1.0 | E | 2.80 | 2.620 | 3.50 | 6.43% | √ | ||||||||
2.0 | D | 2.30 | 2.080 | 2.88 | 9.56% | √ | ||||||||
4.0 | E | 2.50 | 2.350 | 3.52 | 6.00% | √ | ||||||||
0.3 | D | 0.36 | 0.355 | 2.94 | 1.69% | √ | ||||||||
0.5 | E | 0.51 | 0.520 | 3.49 | 2.10% | √ | ||||||||
0.3 | D | 0.31 | 0.320 | 3.40 | 3.20% | √ | ||||||||
0.5 | E | 0.44 | 0.464 | 3.41 | 5.64% | √ | ||||||||
0.4 | C | 0.30 | 0.278 | 1.47 | 7.33% | × | ||||||||
1.0 | D | 0.69 | 0.640 | 2.67 | 8.33% | √ |
表 3 故障识别结果(二)
Table 3 Fault identification results (II)
过渡电 阻/Ω | 特征电 压/kV | 故障 位置 | 功率 Qf/kW | 检测值 | 检测精度 (Qf–Q)/Qf | 结果 | ||||||||
Q/kW | x/rad | |||||||||||||
1.0 | B | 5.30 | 5.240 | 0.15 | 1.13% | √ | ||||||||
2.0 | C | 8.60 | 7.370 | 1.61 | 14.30% | √ | ||||||||
2000 | 0.5 | D | 1.50 | 1.350 | 2.88 | 10.00% | √ | |||||||
1.0 | E | 2.80 | 2.620 | 3.50 | 6.43% | √ | ||||||||
2.0 | D | 2.30 | 2.080 | 2.88 | 9.56% | √ | ||||||||
4.0 | E | 2.50 | 2.350 | 3.52 | 6.00% | √ | ||||||||
0.3 | D | 0.36 | 0.355 | 2.94 | 1.69% | √ | ||||||||
0.5 | E | 0.51 | 0.520 | 3.49 | 2.10% | √ | ||||||||
0.3 | D | 0.31 | 0.320 | 3.40 | 3.20% | √ | ||||||||
0.5 | E | 0.44 | 0.464 | 3.41 | 5.64% | √ | ||||||||
0.4 | C | 0.30 | 0.278 | 1.47 | 7.33% | × | ||||||||
1.0 | D | 0.69 | 0.640 | 2.67 | 8.33% | √ |
试验序号 | 第1次 | 第2次 | ||||||
MMG计算值 | 结果 | MMG计算值 | 结果 | |||||
1(30 dB) | 67.5 | √ | 22 | √ | ||||
2(20 dB) | 50.0 | √ | 25 | √ | ||||
3(10 dB) | 40.0 | √ | 11 | √ |
表 4 噪声影响结果
Table 4 Noise impact results
试验序号 | 第1次 | 第2次 | ||||||
MMG计算值 | 结果 | MMG计算值 | 结果 | |||||
1(30 dB) | 67.5 | √ | 22 | √ | ||||
2(20 dB) | 50.0 | √ | 25 | √ | ||||
3(10 dB) | 40.0 | √ | 11 | √ |
加热设备 | 功率挡 位/kW | 故障位 置/m | 温升波形特征参数 | 结果 | ||||||
Q/kW | x/rad | |||||||||
加热及振动 模拟器 | 2.0 | 37 | 2.865 | 2.16 | √ | |||||
4.0 | 37 | 5.730 | 2.58 | √ | ||||||
热风枪 | 0.4 | 48 | 0.497 | 0.75 | √ | |||||
0.6 | 75 | 0.786 | 2.22 | √ | ||||||
0.8 | 105 | 0.915 | 1.47 | √ |
表 5 早期接地故障人工模拟试验
Table 5 Incipient Fault Manual Simulation Test
加热设备 | 功率挡 位/kW | 故障位 置/m | 温升波形特征参数 | 结果 | ||||||
Q/kW | x/rad | |||||||||
加热及振动 模拟器 | 2.0 | 37 | 2.865 | 2.16 | √ | |||||
4.0 | 37 | 5.730 | 2.58 | √ | ||||||
热风枪 | 0.4 | 48 | 0.497 | 0.75 | √ | |||||
0.6 | 75 | 0.786 | 2.22 | √ | ||||||
0.8 | 105 | 0.915 | 1.47 | √ |
1 | 王斌, 张裕, 罗晨. 高比例光伏接入的配电网分布式运行优化技术[J/OL]. 南方电网技术, 2023: 1–10 (2023-10-12) [2023-12-01].https://kns.cnki.net/kcms/detail/44.1643.TK.20231010.1747.002.html. |
2 | 丁俊, 毛志宇, 刘文许, 等. 基于多维信息融合的配电网故障研判系统研发与应用[J]. 电力科学与技术学报, 2023, 38 (3): 252- 260. |
DING Jun, MAO Zhiyu, LIU Wenxu, et al. Development and application of distribution network fault diagnosis system based on multi-dimensional information fusion[J]. Journal of Electric Power Science and Technology, 2023, 38 (3): 252- 260. | |
3 | 梁琛, 王维洲, 马喜平, 等. 基于随机潮流的高比例新能源接入配电网的极限线损分析[J]. 智慧电力, 2022, 50 (12): 34- 40, 78. |
LIANG Chen, WANG Weizhou, MA Xiping, et al. Analysis on limit line loss in high proportion of renewable energy distribution network based on stochastic power flow[J]. Smart Power, 2022, 50 (12): 34- 40, 78. | |
4 | 王伟, 朱江, 魏兴慎, 等. 面向新型配电系统的网络安全脆弱性评估[J]. 电力信息与通信技术, 2024, 22 (8): 37- 44. |
WANG Wei, ZHU Jiang, WEI Xingshen, et al. Network security vulnerability assessment for new distribution systems[J]. Electric Power Information and Communication Technology, 2024, 22 (8): 37- 44. | |
5 | 赵倩宇, 王璐洋, 王守相. 新型配电系统灵活性及其评价指标综述[J]. 供用电, 2024, 41 (8): 35- 44. |
ZHAO Qianyu, WANG Luyang, WANG Shouxiang. Review on flexibility of new distribution systems and its evaluation indexes[J]. Distribution & Utilization, 2024, 41 (8): 35- 44. | |
6 | 朱丹丹, 周前, 贾勇勇, 等. “规划-运行”融合框架下基于“源-荷”多时序联合场景的新型配电系统无功资源优化配置[J]. 电力系统保护与控制, 2023, 51 (20): 62- 78. |
ZHU Dandan, ZHOU Qian, JIA Yongyong, et al. Optimal allocation of reactive power resources in a new distribution system based on the "source-load" multi-sequence scenario in a "planning-operation" fusion framework[J]. Power System Protection and Control, 2023, 51 (20): 62- 78. | |
7 | 张宇, 魏新迟, 冯凯辉, 等. 计及分布式光伏承载力的配电网侧独立储能充放电策略[J]. 中国电力, 2024, 57 (4): 111- 117. |
ZHANG Yu, WEI Xinchi, FENG Kaihui, et al. Charging and discharging strategies of independent energy storage for distribution grid side considering distributed PV carrying capacity[J]. ELECTRIC POWER, 2024, 57 (4): 111- 117. | |
8 |
王宾, 崔鑫, 董新洲. 配电线路弧光高阻故障检测技术综述[J]. 中国电机工程学报, 2020, 40 (1): 96- 107, 377.
DOI |
WANG Bin, CUI Xin, DONG Xinzhou. Overview of arc high impedance grounding fault detection technologies in distribution system[J]. Proceedings of the CSEE, 2020, 40 (1): 96- 107, 377.
DOI |
|
9 | 徐艳春, 赵彩彩, 孙思涵, 等. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J]. 中国电力, 2021, 54 (11): 133- 143. |
XU Yanchun, ZHAO Caicai, SUN Sihan, et al. Fault location for active distribution network based on improved LMD and energy relative entropy[J]. Electric Power, 2021, 54 (11): 133- 143. | |
10 |
王宾, 耿建昭, 董新洲. 配网高阻接地故障伏安特性分析及检测[J]. 中国电机工程学报, 2014, 34 (22): 3815- 3823.
DOI |
WANG Bin, GENG Jianzhao, DONG Xinzhou. Analysis and detection of volt-ampere characteristics for high impedance faults in distribution systems[J]. Proceedings of the CSEE, 2014, 34 (22): 3815- 3823.
DOI |
|
11 |
王宾, 崔鑫. 中性点经消弧线圈接地配电网弧光高阻接地故障非线性建模及故障解析分析[J]. 中国电机工程学报, 2021, 41 (11): 3864- 3873.
DOI |
WANG Bin, CUI Xin. Nonlinear modeling and analytical analysis of arc high resistance grounding fault in distribution network with neutral grounding via arc suppression coil[J]. Proceedings of the CSEE, 2021, 41 (11): 3864- 3873.
DOI |
|
12 |
张晨浩, 宋国兵, 董新洲. 一种应对高阻故障的单端自适应行波保护方法[J]. 中国电机工程学报, 2020, 40 (11): 3548- 3557.
DOI |
ZHANG Chenhao, SONG Guobing, DONG Xinzhou. A non-unit adaptive traveling wave protection method for high impedance faults[J]. Proceedings of the CSEE, 2020, 40 (11): 3548- 3557.
DOI |
|
13 |
贾琦, 董新洲, 施慎行. 实用化的辐射状配电线路单相接地行波保护方案[J]. 中国电机工程学报, 2019, 39 (6): 1543- 1550, 1851.
DOI |
JIA Qi, DONG Xinzhou, SHI Shenxing. Practical traveling waves based single-phase-to-ground protection for radial connected distribution lines[J]. Proceedings of the CSEE, 2019, 39 (6): 1543- 1550, 1851.
DOI |
|
14 |
薛永端, 李娟, 陈筱薷, 等. 谐振接地系统高阻接地故障暂态选线与过渡电阻辨识[J]. 中国电机工程学报, 2017, 37 (17): 5037- 5048, 5223.
DOI |
XUE Yongduan, LI Juan, CHEN Xiaoru, et al. Faulty feeder selection and transition resistance identification of high impedance fault in a resonant grounding system using transient signals[J]. Proceedings of the CSEE, 2017, 37 (17): 5037- 5048, 5223.
DOI |
|
15 | 刘宝稳, 曾祥君, 张慧芬, 等. 有源柔性接地配电网弧光高阻接地故障检测方法[J]. 中国电机工程学报, 2022, 42 (11): 4001- 4013. |
LIU Baowen, ZENG Xiangjun, ZHANG Huifen, et al. Arc high resistance grounding fault detection method for active flexible grounding distribution network[J]. Proceedings of the CSEE, 2022, 42 (11): 4001- 4013. | |
16 |
王宾, 崔鑫. 基于伏安特性动态轨迹的谐振接地系统弧光高阻接地故障检测方法[J]. 中国电机工程学报, 2021, 41 (20): 6959- 6968.
DOI |
WANG Bin, CUI Xin. Detection method of arc high resistance grounding fault in resonant grounding system based on dynamic trajectory of volt-ampere characteristic[J]. Proceedings of the CSEE, 2021, 41 (20): 6959- 6968.
DOI |
|
17 |
WANG B, GENG J Z, DONG X Z. High-impedance fault detection based on nonlinear voltage–current characteristic profile identification[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 3783- 3791.
DOI |
18 |
WEI M J, LIU W S, ZHANG H X, et al. Distortion-based detection of high impedance fault in distribution systems[J]. IEEE Transactions on Power Delivery, 2021, 36 (3): 1603- 1618.
DOI |
19 |
韦明杰, 石访, 张恒旭, 等. 基于零序电流波形区间斜率曲线的配电网高阻接地故障检测[J]. 电力系统自动化, 2020, 44 (14): 164- 171.
DOI |
WEI Mingjie, SHI Fang, ZHANG Hengxu, et al. Detection of high impedance grounding fault in distribution network based on interval slope curves of zero-sequence current[J]. Automation of Electric Power Systems, 2020, 44 (14): 164- 171.
DOI |
|
20 |
WEI M J, SHI F, ZHANG H X, et al. High impedance arc fault detection based on the harmonic randomness and waveform distortion in the distribution system[J]. IEEE Transactions on Power Delivery, 2020, 35 (2): 837- 850.
DOI |
21 |
韦明杰, 石访, 张恒旭, 等. 基于同步零序电流谐波群体比相的谐振接地系统高阻故障选线及区段定位方法[J]. 中国电机工程学报, 2021, 41 (24): 8358- 8372.
DOI |
WEI Mingjie, SHI Fang, ZHANG Hengxu, et al. Feeder selection and section location of high impedance fault at resonant networks based on the phase differences between the synchronous harmonics of the zero sequence currents[J]. Proceedings of the CSEE, 2021, 41 (24): 8358- 8372.
DOI |
|
22 |
韦明杰, 张恒旭, 石访, 等. 基于谐波能量和波形畸变的配电网弧光接地故障辨识[J]. 电力系统自动化, 2019, 43 (16): 148- 154.
DOI |
WEI Mingjie, ZHANG Hengxu, SHI Fang, et al. Identification of arcing grounded fault in distribution network based on harmonic energy and waveform distortion[J]. Automation of Electric Power Systems, 2019, 43 (16): 148- 154.
DOI |
|
23 |
WANG X W, GAO J, WEI X X, et al. High impedance fault detection method based on variational mode decomposition and teager–kaiser energy operators for distribution network[J]. IEEE Transactions on Smart Grid, 2019, 10 (6): 6041- 6054.
DOI |
24 |
WANG X W, ZHANG H X, SHI F, et al. Location of single phase to ground faults in distribution networks based on synchronous transients energy analysis[J]. IEEE Transactions on Smart Grid, 2020, 11 (1): 774- 785.
DOI |
25 |
方毅, 薛永端, 宋华茂, 等. 谐振接地系统高阻接地故障暂态能量分析与选线[J]. 中国电机工程学报, 2018, 38 (19): 5636- 5645, 5921.
DOI |
FANG Yi, XUE Yongduan, SONG Huamao, et al. Transient energy analysis and faulty feeder identification method of high impedance fault in the resonant grounding system[J]. Proceedings of the CSEE, 2018, 38 (19): 5636- 5645, 5921.
DOI |
|
26 |
王敏学, 李黎, 周达明, 等. 分布式光纤传感技术在输电线路在线监测中的应用研究综述[J]. 电网技术, 2021, 45 (9): 3591- 3600.
DOI |
WANG Minxue, LI Li, ZHOU Daming, et al. Overview of studies on application of distributed optical fiber sensing technology in online monitoring of transmission lines[J]. Power System Technology, 2021, 45 (9): 3591- 3600.
DOI |
|
27 |
李成榕, 马国明. 光纤布喇格光栅传感器应用于电气设备监测的研究进展[J]. 中国电机工程学报, 2013, 33 (12): 114- 122,193.
DOI |
LI Chengrong, MA Guoming. Research and development of fiber Bragg grating monitoring in electrical engineering[J]. Proceedings of the CSEE, 2013, 33 (12): 114- 122,193.
DOI |
|
28 |
黄金朋, 张哲, 汪伟, 等. 基于分布式光纤测温技术的超导电缆局部失超检测和保护方法[J]. 电力系统保护与控制, 2020, 48 (14): 76- 84.
DOI |
HUANG Jinpeng, ZHANG Zhe, WANG Wei, et al. A local quench detection and protection method for a superconducting cable based on distributed optical fiber temperature measurement technology[J]. Power System Protection and Control, 2020, 48 (14): 76- 84.
DOI |
|
29 | 董雄鹰. 基于分布式光纤测温的微电网电缆故障定位研究[D]. 北京: 华北电力大学, 2021. |
DONG Xiongying. Research on microgrid cable fault location based on distributed optical fiber temperature measurement[D]. Beijing: North China Electric Power University, 2021. | |
30 | IDARRAGA OSPINA G, CUBILLOS D, IBANEZ L. Analysis of arcing fault models[C]//2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America. Bogota, Colombia. IEEE, 2008: 1–5. |
31 | 奥齐西克. 俞昌铭主译. 热传导[M]. 北京: 高等教育出版社, 1983. |
32 | 刘同同. 基于热路模型的电力电缆导体温度计算及试验研究[D]. 吉林: 东北电力大学, 2016. |
LIU Tongtong. Computational and experimental research on conductor temperature of power cable based on thermal circuit model[D]. Jilin: Northeast Dianli University, 2016. | |
33 |
KIZILCAY M, KOCH K H. Numerical fault arc simulation based on power arc tests[J]. European Transactions on Electrical Power, 1994, 4 (3): 177- 185.
DOI |
34 |
SUN P, ZHANG J F, ZHANG D J, et al. Morphological identification of transformer magnetising inrush current[J]. Electronics Letters, 2002, 38 (9): 437.
DOI |
35 |
牛海清, 周鑫, 王晓兵, 等. 外皮温度监测的单芯电缆暂态温度计算与试验[J]. 高电压技术, 2009, 35 (9): 2138- 2143.
DOI |
NIU Haiqing, ZHOU Xin, WANG Xiaobing, et al. Calculation and experiment of transient temperatures of single-core cables on jacket temperature monitoring[J]. High Voltage Engineering, 2009, 35 (9): 2138- 2143.
DOI |
[1] | 王阳, 马伟东, 刘洎溟, 王博石, 姚凯, 韩伟, 余娟. 基于关联规则与重构误差的二次系统故障检测方法[J]. 中国电力, 2024, 57(8): 159-167. |
[2] | 王金丽, 李丰胜, 解芳, 张姚, 田野. “双碳”战略背景下新型配电系统技术标准体系[J]. 中国电力, 2023, 56(5): 22-31. |
[3] | 符金伟, 史常凯, 尹惠, 关石磊, 王安琪, 王越. 基于综合特征矩阵的配电网故障判别方法[J]. 中国电力, 2021, 54(11): 125-132. |
[4] | 周正雄, 夏向阳, 朱鹏, 李明德, 黄海, 陈善求, 夏君山, 王瑞琪. 高压电缆早期间歇性电弧接地故障识别方法[J]. 中国电力, 2020, 53(12): 167-176. |
[5] | 吕小红, 张敏, 曹文忠, 熊来红. 基于灰色经验融合的电网故障研判模型[J]. 中国电力, 2018, 51(4): 27-32. |
[6] | 何文荣, 贺霄皖, 郑珊珊, 宋昕, 赵勇, 卫二兵. 采用OWTS检测10 kV交联聚乙烯电缆本体主绝缘损伤[J]. 中国电力, 2017, 50(8): 93-97. |
[7] | 祝郦伟, 沈晓明, 杨帆, 刘兴平, 王晓宇, 刘凯. 基于正则化的接地网断开故障诊断方法[J]. 中国电力, 2016, 49(11): 31-35. |
[8] | 郑梦笛,吴细秀,闫格. 基于新型故障电弧模型的电弧能量特性分析[J]. 中国电力, 2015, 48(11): 49-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||