中国电力 ›› 2025, Vol. 58 ›› Issue (2): 176-185.DOI: 10.11930/j.issn.1004-9649.202405076
罗萍萍1(), 盛奥1(
), 林济铿2(
), 王忠岳3, 李启本4, 周平4
收稿日期:
2024-05-17
接受日期:
2024-11-22
出版日期:
2025-02-28
发布日期:
2025-02-25
作者简介:
罗萍萍(1969—),女,副教授,从事电力系统继电保护研究,E-mail:luopingping@shiep.edu.cn基金资助:
Pingping LUO1(), Ao SHENG1(
), Jikeng LIN2(
), Zhongyue WANG3, Qiben LI4, Ping ZHOU4
Received:
2024-05-17
Accepted:
2024-11-22
Online:
2025-02-28
Published:
2025-02-25
Supported by:
摘要:
台风天气下负荷水平的剧烈波动威胁电网平衡,相应地台风气象条件下的负荷场景生成受到电力公司的重视。因此,提出一种面向台风天气基于条件生成对抗网络(conditional generative adversarial network,CGAN)模型的负荷场景生成算法。首先,针对台风样本登陆位置分散、持续周期不同及等级不同的特点,提出一种台风下负荷样本的拆分及标签给定方法。然后,针对台风气象下负荷样本数量稀少,提出一种基于条件概率的样本扩充策略以扩充样本集。最后,为了进一步提升样本集的有效性,基于迁徙训练思想,先用正常气象下的负荷样本对CGAN进行训练,然后再采用台风样本集训练CGAN,在模型训练完成后,输入随机噪声与台风标签即可生成对应的负荷场景。算例证实了所提模型及算法的有效性和先进性。
罗萍萍, 盛奥, 林济铿, 王忠岳, 李启本, 周平. 基于CGAN台风气象下负荷场景生成[J]. 中国电力, 2025, 58(2): 176-185.
Pingping LUO, Ao SHENG, Jikeng LIN, Zhongyue WANG, Qiben LI, Ping ZHOU. CGAN-Based Load Scenario Generation under Typhoon Weather[J]. Electric Power, 2025, 58(2): 176-185.
图 1 类型为$ {T^{\text{y}}} $持续$ {C^{\text{y}}} $日的台风下负荷标签给定
Fig.1 Load label setting under a typhoon of type $ {T^{\text{y}}} $ for $ {C^{\text{y}}} $ days
结构 | 神经元个数 | 动态均值动量 | 激活函数 | |||
输入层 | 89 | / | 0.2 | |||
隐藏层1 | 64 | 0.8 | 0.2 | |||
隐藏层2 | 128 | 0.8 | 0.2 | |||
输出层 | 96 | / | — |
表 1 生成器网络结构
Table 1 Structure of the generator
结构 | 神经元个数 | 动态均值动量 | 激活函数 | |||
输入层 | 89 | / | 0.2 | |||
隐藏层1 | 64 | 0.8 | 0.2 | |||
隐藏层2 | 128 | 0.8 | 0.2 | |||
输出层 | 96 | / | — |
结构 | 神经元个数 | 动态均值动量 | 激活函数 | |||
输入层 | 123 | / | 0.2 | |||
隐藏层1 | 128 | 0.8 | 0.2 | |||
隐藏层2 | 64 | 0.8 | 0.2 | |||
输出层 | 1 | / | — |
表 2 判别器网络结构
Table 2 Structure of the discriminator
结构 | 神经元个数 | 动态均值动量 | 激活函数 | |||
输入层 | 123 | / | 0.2 | |||
隐藏层1 | 128 | 0.8 | 0.2 | |||
隐藏层2 | 64 | 0.8 | 0.2 | |||
输出层 | 1 | / | — |
置信 度/% | 台风类型 | 对比方法 | 未扩充样本 训练 | 扩充样本 训练 | ||||||||||||||
登录 位置 | 等级 | 持续 天数 | 覆盖 率/% | 负荷 区间 | 覆盖 率/% | 负荷 区间 | 覆盖 率/% | 负荷 区间 | ||||||||||
90 | 3 | 3 | 4 | 87.5 | 0.63 | 91.1 | 0.51 | 92.9 | 0.49 | |||||||||
80 | 66.1 | 0.46 | 69.8 | 0.36 | 71.8 | 0.34 | ||||||||||||
50 | 42.5 | 0.30 | 50.2 | 0.25 | 51.8 | 0.21 | ||||||||||||
90 | 1 | 2 | 6 | 88.2 | 0.65 | 89.3 | 0.57 | 90.1 | 0.56 | |||||||||
80 | 65.1 | 0.47 | 68.6 | 0.44 | 70.4 | 0.42 | ||||||||||||
50 | 41.6 | 0.32 | 43.2 | 0.29 | 44.7 | 0.26 |
表 3 生成负荷场景指标计算结果
Table 3 Calculation results of load generation scenario indicators
置信 度/% | 台风类型 | 对比方法 | 未扩充样本 训练 | 扩充样本 训练 | ||||||||||||||
登录 位置 | 等级 | 持续 天数 | 覆盖 率/% | 负荷 区间 | 覆盖 率/% | 负荷 区间 | 覆盖 率/% | 负荷 区间 | ||||||||||
90 | 3 | 3 | 4 | 87.5 | 0.63 | 91.1 | 0.51 | 92.9 | 0.49 | |||||||||
80 | 66.1 | 0.46 | 69.8 | 0.36 | 71.8 | 0.34 | ||||||||||||
50 | 42.5 | 0.30 | 50.2 | 0.25 | 51.8 | 0.21 | ||||||||||||
90 | 1 | 2 | 6 | 88.2 | 0.65 | 89.3 | 0.57 | 90.1 | 0.56 | |||||||||
80 | 65.1 | 0.47 | 68.6 | 0.44 | 70.4 | 0.42 | ||||||||||||
50 | 41.6 | 0.32 | 43.2 | 0.29 | 44.7 | 0.26 |
1 | 李明节, 梁志峰, 许涛, 等. 基于敏感气温空间分布的度夏度冬日最大负荷预测与应用研究[J]. 电网技术, 2023, 47 (3): 1088- 1097. |
LI Mingjie, LIANG Zhifeng, XU Tao, et al. Prediction and application of maximum daily load in summer and winter based on spatial distribution of sensitive temperatures[J]. Power System Technology, 2023, 47 (3): 1088- 1097. | |
2 | 樊晓伟, 王瑞妙, 杨海峰, 等. 计及源荷不确定的综合能源微电网集群优化运行[J]. 电力建设, 2024, 45 (8): 128- 139. |
FAN Xiaowei, WANG Ruimiao, YANG Haifeng, et al. Optimization operation of integrated energy microgrid cluster considering source-load uncertainty[J]. Electric Power Construction, 2024, 45 (8): 128- 139. | |
3 | 朱海军, 鞠立伟, 杨慧, 等. 计及不确定性的新型灵活性资源两阶段鲁棒配置优化模型[J]. 电力建设, 2024, 45 (7): 1- 11. |
ZHU Haijun, JU Liwei, YANG Hui, et al. Optimal two-stage robust configuration model and algorithm of new flexibility resources considering uncertainty[J]. Electric Power Construction, 2024, 45 (7): 1- 11. | |
4 |
李滨, 陆明珍. 考虑实时气象耦合作用的地区电网短期负荷预测建模[J]. 电力系统自动化, 2020, 44 (17): 60- 68.
DOI |
LI Bin, LU Mingzhen. Short-term load forecasting modeling of regional power grid considering real-time meteorological coupling effect[J]. Automation of Electric Power Systems, 2020, 44 (17): 60- 68.
DOI |
|
5 | 申洪涛, 李飞, 史轮, 等. 基于气象数据降维与混合深度学习的短期电力负荷预测[J]. 电力建设, 2024, 45 (1): 13- 21. |
SHEN Hongtao, LI Fei, SHI Lun, et al. Short-term power load forecasting based on reduction of meteorological data dimensionality and hybrid deep learning[J]. Electric Power Construction, 2024, 45 (1): 13- 21. | |
6 | 李雪玲, 刘洋, 李振伟, 等. 基于气象分型改进构造不确定集的多微网低碳鲁棒经济调度[J]. 电力建设, 2023, 44 (8): 142- 156. |
LI Xueling, LIU Yang, LI Zhenwei, et al. Robust low-carbon economic dispatch of multiple microgrids based on improved uncertainty set of meteorological classification[J]. Electric Power Construction, 2023, 44 (8): 142- 156. | |
7 |
李宝聚, 齐宏伟, 傅吉悦, 等. 极端气象天气对新能源运行影响分析[J]. 吉林电力, 2022, 50 (1): 10- 13.
DOI |
LI Baoju, QI Hongwei, FU Jiyue, et al. Analysis on the impact of extreme weather on new energy operation[J]. Jilin Electric Power, 2022, 50 (1): 10- 13.
DOI |
|
8 |
李帅, 李哲, 梁允, 等. 气象因素对电力行业的影响研究[J]. 东北电力技术, 2019, 40 (8): 7- 10.
DOI |
LI Shuai, LI Zhe, LIANG Yun, et al. Research on influence of meteorology on electric power industry[J]. Northeast Electric Power Technology, 2019, 40 (8): 7- 10.
DOI |
|
9 | 方华亮, 李大虎, 彭辉, 等. 基于“互联网+” 的分散式太阳能规划方法[J]. 中国电机工程学报, 2017, 37 (5): 1316- 1323. |
FANG Hualiang, LI Dahu, PENG Hui, et al. Distributed solar energy planning method based on Internet plus[J]. Proceedings of the CSEE, 2017, 37 (5): 1316- 1323. | |
10 |
MOTLAGH O, BERRY A, O’NEIL L. Clustering of residential electricity customers using load time series[J]. Applied Energy, 2019, 237, 11- 24.
DOI |
11 | 李博, 孙建军, 余攀, 等. 基于负荷聚类与网络等效的配电网多维典型场景生成方法[J]. 中国电机工程学报, 2021, 41 (8): 2661- 2670. |
LI Bo, SUN Jianjun, YU Pan, et al. A multi-dimensional typical scenarios generation algorithm for distribution network based on load clustering and network structure equivalence[J]. Proceedings of the CSEE, 2021, 41 (8): 2661- 2670. | |
12 | 曲凯, 李湃, 黄越辉, 等. 面向新能源消纳能力评估的年负荷序列建模及场景生成方法[J]. 电力系统自动化, 2021, 45 (1): 123- 131. |
QU Kai, LI Pai, HUANG Yuehui, et al. Modeling and scenario generation method of annual load series for evaluation of renewable energy accommodation capacity[J]. Automation of Electric Power Systems, 2021, 45 (1): 123- 131. | |
13 | 李辉, 任洲洋, 胡博, 等. 基于时序生成对抗网络的月度风光发电功率场景分析方法[J]. 中国电机工程学报, 2022, 42 (2): 537- 547. |
LI Hui, REN Zhouyang, HU Bo, et al. A sequential generative adversarial network based monthly scenario analysis method for wind and photovoltaic power[J]. Proceedings of the CSEE, 2022, 42 (2): 537- 547. | |
14 | 董骁翀, 孙英云, 蒲天骄. 基于条件生成对抗网络的可再生能源日前场景生成方法[J]. 中国电机工程学报, 2020, 40 (17): 5527- 5535. |
DONG Xiaochong, SUN Yingyun, PU Tianjiao. Day-ahead scenario generation of renewable energy based on conditional GAN[J]. Proceedings of the CSEE, 2020, 40 (17): 5527- 5535. | |
15 |
SARMAS E, SPILIOTIS E, STAMATOPOULOS E, et al. Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent long short-term memory models[J]. Renewable Energy, 2023, 216, 118997.
DOI |
16 | 肖白, 黄钰茹, 姜卓, 等. 数据匮乏场景下采用生成对抗网络的空间负荷预测方法[J]. 中国电机工程学报, 2020, 40 (24): 7990- 8001. |
XIAO Bai, HUANG Yuru, JIANG Zhuo, et al. The method of spatial load forecasting based on the generative adversarial network for data scarcity scenarios[J]. Proceedings of the CSEE, 2020, 40 (24): 7990- 8001. | |
17 |
JING H, ZHAO C H. A data expansion based piecewise regression strategy for incrementally monitoring the wind turbine with power curve[J]. Journal of Central South University, 2023, 30 (5): 1601- 1617.
DOI |
18 |
PENG X S, YANG Z M, LI Y H, et al. Short-term wind power prediction based on stacked denoised auto-encoder deep learning and multi-level transfer learning[J]. Wind Energy, 2023, 26 (10): 1066- 1081.
DOI |
19 |
朱涛, 陈翔, 高强, 等. 基于Logsitic回归模型和自适应密度聚类算法的分行业负荷增长规律[J]. 电网与清洁能源, 2019, 35 (5): 20- 28.
DOI |
ZHU Tao, CHEN Xiang, GAO Qiang, et al. Law of load growth in different industries based on logsitic regression model and adaptive density clustering algorithm[J]. Power System and Clean Energy, 2019, 35 (5): 20- 28.
DOI |
|
20 |
郑凌蔚, 刘士荣, 周文君, 等. 并网型可再生能源发电系统容量配置与优化[J]. 电力系统保护与控制, 2014, 42 (17): 31- 37.
DOI |
ZHENG Lingwei, LIU Shirong, ZHOU Wenjun, et al. Capacity configuration and optimization of grid-connected renewable energy power generation system[J]. Power System Protection and Control, 2014, 42 (17): 31- 37.
DOI |
|
21 |
陈国民, 杨梦琪, 张喜平, 等. 2020年西北太平洋和南海台风预报精度评定[J]. 气象, 2022, 48 (4): 516- 525.
DOI |
CHEN Guomin, YANG Mengqi, ZHANG Xiping, et al. Verification on forecasts of typhoons over western North Pacific and South China Sea in 2020[J]. Meteorological Monthly, 2022, 48 (4): 516- 525.
DOI |
|
22 | 欧阳誉波. 基于混合藤Copula模型的多风电场出力相关性建模及其在无功优化中的应用[D]. 成都: 西南交通大学, 2016. |
OUYANG Yubo. Modeling of multi-dimensional wind farms output correlation based on mixture vine Copula structures and its application in reactive power optimization[D]. Chengdu: Southwest Jiaotong University, 2016. | |
23 | MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL].(2014-11-06) [2024-05-16]. https://arxiv.org/abs/1411.1784. |
24 | ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks[EB/OL]. (2017-01-17) [2024-05-16].http://arxiv.org/abs/1701.04862v1. |
25 |
HOCHREITER R, PFLUG G C. Financial scenario generation for stochastic multi-stage decision processes as facility location problems[J]. Annals of Operations Research, 2007, 152 (1): 257- 272.
DOI |
26 |
ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109 (1): 43- 76.
DOI |
27 | 李湃, 刘纯, 黄越辉, 等. 基于隐马尔科夫模型的多风电场相关性出力时间序列建模方法[J]. 中国电机工程学报, 2019, 39 (19): 5683- 5691. |
LI Pai, LIU Chun, HUANG Yuehui, et al. Modeling correlated power time series of multiple wind farms based on hidden Markov model[J]. Proceedings of the CSEE, 2019, 39 (19): 5683- 5691. |
[1] | 高志远, 庄卫金, 李峰, 于芳, 张鸿, 王艳, 夏旻. 调控领域人工智能应用的高复用性验证平台[J]. 中国电力, 2025, 58(3): 142-150. |
[2] | 薛溟枫, 毛晓波, 肖浩, 周毅斌, 浦骁威, 裴玮. 基于联邦学习的综合能源微网群协同优化运行方法[J]. 中国电力, 2023, 56(12): 164-173. |
[3] | 郝玲玲, 朱永利, 王永正. 基于DCAE-KSSELM的变压器故障诊断方法[J]. 中国电力, 2022, 55(2): 125-130. |
[4] | 刘文君, 董明, 徐元孚, 韩强, 王鑫, 许雷, 杜明. 电力设备运行状态大数据标签体系与关键技术[J]. 中国电力, 2022, 55(1): 126-132. |
[5] | 华志刚, 范佳卿, 郭荣, 汪勇, 吴潇翔. 人工智能技术在火电行业的应用探讨[J]. 中国电力, 2021, 54(7): 198-207. |
[6] | 赵永良, 付鑫, 郭阳, 边迎迎, 王思宁. 基于深度学习和图像识别的电力配件智能出入库[J]. 中国电力, 2021, 54(3): 55-60. |
[7] | 李博, 方彤. 北斗卫星导航系统(BDS)在智能电网的应用与展望[J]. 中国电力, 2020, 53(8): 107-116. |
[8] | 王利利, 张琳娟, 许长清, 武宏波, 李翼铭, 黄玉晶. 能源互联网背景下园区用户画像及成熟度评价模型研究[J]. 中国电力, 2020, 53(8): 19-28. |
[9] | 杨晓楠, 孙博, 郎燕生. 基于深度学习的特高压直流闭锁故障智能调度决策[J]. 中国电力, 2020, 53(6): 8-17. |
[10] | 郭敬东, 陈彬, 王仁书, 王佳宇, 仲林林. 基于YOLO的无人机电力线路杆塔巡检图像实时检测[J]. 中国电力, 2019, 52(7): 17-23. |
[11] | 罗昊, 苏盛, 杨浩, 林楠, 袁晨. 基于FPGA的电力巡线无人机硬件加密通信方法[J]. 中国电力, 2019, 52(7): 11-16. |
[12] | 岳国良, 路艳巧, 常浩, 孙翠英. 一种基于可见光巡检图像的杂草智能识别方法[J]. 中国电力, 2019, 52(11): 138-144,174. |
[13] | 张晋宾, 周四维. 智能电厂概念及体系架构模型研究[J]. 中国电力, 2018, 51(10): 2-7,42. |
[14] | 李博, 高志远. 人工智能技术在智能电网中的应用分析和展望[J]. 中国电力, 2017, 50(12): 136-140. |
[15] | 李海山, 雎刚, 毛晓飞, 余廷芳. 基于智能计算的锅炉燃烧优化指导系统及其应用[J]. 中国电力, 2014, 47(7): 1-5. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||