中国电力 ›› 2025, Vol. 58 ›› Issue (2): 176-185.DOI: 10.11930/j.issn.1004-9649.202405076

• 电网 • 上一篇    下一篇

基于CGAN台风气象下负荷场景生成

罗萍萍1(), 盛奥1(), 林济铿2(), 王忠岳3, 李启本4, 周平4   

  1. 1. 上海电力大学 电气工程学院,上海 200090
    2. 同济大学 电子与信息工程学院,上海 201804
    3. 国网上海市电力公司市区供电公司,上海 200080
    4. 国网上海市电力公司松江供电公司,上海 201600
  • 收稿日期:2024-05-17 接受日期:2024-11-22 出版日期:2025-02-28 发布日期:2025-02-25
  • 作者简介:罗萍萍(1969—),女,副教授,从事电力系统继电保护研究,E-mail:luopingping@shiep.edu.cn
    盛奥(1997—),男,硕士研究生,从事源荷数据挖掘研究,E-mail:1772876090@qq.com
    林济铿(1967—),男,通信作者,教授,从事电力系统优化调度、EMS/DEMS、人工智能、电力市场等研究,E-mail:mejklin@126.com
  • 基金资助:
    国家自然科学基金资助项目(51177107)。

CGAN-Based Load Scenario Generation under Typhoon Weather

Pingping LUO1(), Ao SHENG1(), Jikeng LIN2(), Zhongyue WANG3, Qiben LI4, Ping ZHOU4   

  1. 1. School of Electric Power Engineering, Shanghai University of Electric Power, Shanghai 200090, China
    2. Electronic and Information Engineering, Tongji University, Shanghai 201804, China
    3. State Grid Shanghai Electric Power Company Urban Power Supply Company, Shanghai 200080, China
    4. State Grid Songjiang Power Supply Company, SMEPC, Shanghai 201600, China
  • Received:2024-05-17 Accepted:2024-11-22 Online:2025-02-28 Published:2025-02-25
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51177107).

摘要:

台风天气下负荷水平的剧烈波动威胁电网平衡,相应地台风气象条件下的负荷场景生成受到电力公司的重视。因此,提出一种面向台风天气基于条件生成对抗网络(conditional generative adversarial network,CGAN)模型的负荷场景生成算法。首先,针对台风样本登陆位置分散、持续周期不同及等级不同的特点,提出一种台风下负荷样本的拆分及标签给定方法。然后,针对台风气象下负荷样本数量稀少,提出一种基于条件概率的样本扩充策略以扩充样本集。最后,为了进一步提升样本集的有效性,基于迁徙训练思想,先用正常气象下的负荷样本对CGAN进行训练,然后再采用台风样本集训练CGAN,在模型训练完成后,输入随机噪声与台风标签即可生成对应的负荷场景。算例证实了所提模型及算法的有效性和先进性。

关键词: 台风气象, 负荷场景生成, 数据扩充, 标签, 人工智能

Abstract:

The violent fluctuation of power load level under typhoon weather threatens the power balance of power grid. Therefore, load scenario generation under typhoon weather conditions has attracted increasing attention from power supply companies. A load scenario generation algorithm based on conditional generative adversarial network (CGAN) model for typhoon weather is proposed. Firstly, considering the fact that the typhoon samples have the characteristics of scattered landing locations, different duration periods and different grades, a load sample classification and label setting method for typhoon weather is proposed. Then, a sample expansion strategy based on conditional probability is proposed to expand the sample set to solve the problem of scarce load samples under typhoon weather. Finally, in order to further improve the actual effectiveness of the sample set, based on the idea of migration training, the load samples under normal weather are firstly used to train the CGAN, and then the typhoon sample sets are applied to train CGAN. After the model training is completed, the corresponding load scenarios can be quickly generated by inputting random noise and typhoon labels. The effectiveness and advancement of the proposed model and algorithm are verified by data set from a practical power system.

Key words: typhoon weather, load scenario generation, data expansion, label setting, artificial intelligence