[1] 尹金良, 朱永利, 俞国勤, 等. 基于高斯过程分类器的变压器故障诊断[J]. 电工技术学报, 2013, 28(1): 158–164 YIN Jinliang, ZHU Yongli, YU Guoqin, et al. Fault diagnosis of transformers based on Gaussian process classifier[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 158–164 [2] 何子襄, 朱帆, 朱永利. 关于电力系统变压器故障信号准确诊断仿真[J]. 计算机仿真, 2018, 35(10): 136–139,149 HE Zixiang, ZHU Fan, ZHU Yongli. Simulation of fault diagnosis of transformer fault in power system[J]. Computer Simulation, 2018, 35(10): 136–139,149 [3] 石鑫. 基于深度学习的变压器故障诊断技术研究[D]. 北京: 华北电力大学, 2016. SHI Xin. Research on technologies of transformer fault diagnosis based on deep learning[D]. Beijing: North China Electric Power University, 2016. [4] 柳强, 丁宇. 基于SVM和Kriging模型的变压器故障诊断方法[J]. 高压电器, 2018, 54(12): 274–280 LIU Qiang, DING Yu. Fault diagnosis method of power transformers based on support vector machine and Kriging model[J]. High Voltage Apparatus, 2018, 54(12): 274–280 [5] 郭慧莹, 王毅. 基于DGA支持向量机的变压器故障诊断[J]. 现代电子技术, 2019, 42(19): 154–158,163 GUO Huiying, WANG Yi. Transformer fault diagnosis based on DGA support vector machine[J]. Modern Electronics Technique, 2019, 42(19): 154–158,163 [6] 方涛, 钱晔, 郭灿杰, 等. 基于天牛须搜索优化支持向量机的变压器故障诊断研究[J]. 电力系统保护与控制, 2020, 48(20): 90–96 FANG Tao, QIAN Ye, GUO Canjie, et al. Research on transformer fault diagnosis based on a beetle antennae search optimized support vector machine[J]. Power System Protection and Control, 2020, 48(20): 90–96 [7] 吴君, 丁欢欢, 马星河, 等. 改进自适应蜂群优化算法在变压器故障诊断中的应用[J]. 电力系统保护与控制, 2020, 48(9): 174–180 WU Jun, DING Huanhuan, MA Xinghe, et al. Application of improved adaptive bee colony optimization algorithm in transformer fault diagnosis[J]. Power System Protection and Control, 2020, 48(9): 174–180 [8] 石鑫, 朱永利. 深度学习神经网络在电力变压器故障诊断中的应用[J]. 电力建设, 2015, 36(12): 116–122 SHI Xin, ZHU Yongli. Application of deep learning neural network in fault diagnosis of power transformer[J]. Electric Power Construction, 2015, 36(12): 116–122 [9] 王保义, 杨韵洁, 张少敏. 改进BP神经网络的SVM变压器故障诊断[J]. 电测与仪表, 2019, 56(19): 53–58 WANG Baoyi, YANG Yunjie, ZHANG Shaomin. Fault diagnosis of support vector machine transformer based on improved BP neural network[J]. Electrical Measurement & Instrumentation, 2019, 56(19): 53–58 [10] 遇炳杰, 朱永利. 加权极限学习机在变压器故障诊断中的应用[J]. 计算机工程与设计, 2013, 34(12): 4340–4344 YU Bingjie, ZHU Yongli. Transformer fault diagnosis using weighted extreme learning machine[J]. Computer Engineering and Design, 2013, 34(12): 4340–4344 [11] 石鑫, 朱永利, 宁晓光, 等. 基于深度自编码网络的电力变压器故障诊断[J]. 电力自动化设备, 2016, 36(5): 122–126 SHI Xin, ZHU Yongli, NING Xiaoguang, et al. Transformer fault diagnosis based on deep auto-encoder network[J]. Electric Power Automation Equipment, 2016, 36(5): 122–126 [12] LU C, WANG Z Y, QIN W L, et al. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification[J]. Signal Processing, 2017, 130: 377–388. [13] 袁海满, 吴广宁, 高波. 基于DGA的粒子群极限学习机电力变压器故障诊断[J]. 高压电器, 2016, 52(11): 176–180,187 YUAN Haiman, WU Guangning, GAO Bo. Fault diagnosis of power transformer using particle swarm optimization and extreme learning machine based on DGA[J]. High Voltage Apparatus, 2016, 52(11): 176–180,187 [14] KASUN L L C, ZHOU H M, HUANG G B, et al. Representational learning with extreme learning machine for big data[J]. IEEE Intelligent System, 2013(4): 1–4. [15] 王春明, 朱永利. 基于深度降噪极限学习机的变压器故障诊断[J]. 电测与仪表, 2019, 56(15): 143–147 WANG Chunming, ZHU Yongli. Transformer fault diagnosis based on deep de-noising extreme learning machine[J]. Electrical Measurement & Instrumentation, 2019, 56(15): 143–147 [16] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. [17] LE Q V. Building high-level features using large scale unsupervised learning[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada. IEEE, 2013: 8595-8598. [18] 王萍. 基于深度网络的图像拷贝检测算法[D]. 天津: 天津大学, 2017. WANG Ping. Image copy detection algorithm based on deep learning[D]. Tianjin: Tianjin University, 2017. [19] 袁洪芳, 张雪, 王华庆. 基于半监督极限学习机的轴承故障诊断[J]. 测控技术, 2016, 35(3): 13–16,21 YUAN Hongfang, ZHANG Xue, WANG Huaqing. Fault diagnosis of rolling bearings based on a semi-supervised extreme learning machine[J]. Measurement & Control Technology, 2016, 35(3): 13–16,21 [20] 刘金花. 基于主动半监督极限学习机多类图像分类方法研究[D]. 南京: 东南大学, 2016. LIU Jinhua. Active and semi-supervised learning based on elm for multi-class image classification[D]. Nanjing: Southeast University, 2016. [21] 王德文, 周昉昉. 基于无监督极限学习机的用电负荷模式提取[J]. 电网技术, 2018, 42(10): 3393–3400 WANG Dewen, ZHOU Fangfang. Extraction of electricity consumption load pattern based on unsupervised extreme learning machine[J]. Power System Technology, 2018, 42(10): 3393–3400 [22] 董朕. 基于经验模态分解和极限学习机的风电功率短期预测方法研究[D]. 广州: 广东工业大学, 2018. DONG Zhen. Research on short-term wind power forecasting method based on empirical mode decomposition and extreme learning machine[D]. Guangzhou: Guangdong University of Technology, 2018. [23] 张海英. 基于降维的极限学习机算法研究[D]. 大连: 辽宁师范大学, 2018. ZHANG Haiying. Research on extreme learning machine algorithm based on dimensionality reduction[D]. Dalian, China: Liaoning Normal University, 2018. [24] 任瑞琪. 优化核极限学习机方法在智能电网中的应用[D]. 兰州: 兰州交通大学, 2018. REN Ruiqi. Applications in the smart grid based on optimized kernel extreme learning machine[D]. Lanzhou: Lanzhou Jiaotong University, 2018. [25] 刘超. 核极限学习机算法与应用研究[D]. 沈阳: 沈阳航空航天大学, 2018. LIU Chao. Research on kernel extreme learning machine algorithms and application[D]. Shenyang: Shenyang Aerospace University, 2018.
|