中国电力 ›› 2024, Vol. 57 ›› Issue (8): 117-129.DOI: 10.11930/j.issn.1004-9649.202309007
彭寒梅1(), 尹棠1(
), 肖千皓1(
), 谭貌1,2(
), 苏永新1,2(
), 李辉1,2(
)
收稿日期:
2023-09-04
出版日期:
2024-08-28
发布日期:
2024-08-24
作者简介:
彭寒梅(1979—),女,通信作者,博士,副教授,从事智能配电网规划及中低压柔性互联技术研究,E-mail:penghanmei8@163.com基金资助:
Hanmei PENG1(), Tang YIN1(
), Qianhao XIAO1(
), Mao TAN1,2(
), Yongxin SU1,2(
), Hui LI1,2(
)
Received:
2023-09-04
Online:
2024-08-28
Published:
2024-08-24
Supported by:
摘要:
柔性互联技术是解决高比例分布式电源(distributed generation,DG)配电网面临诸多问题的有效手段之一。提出了一种基于多层优化的配电网中压与低压柔性互联协调规划方法。首先,建立基于电力电子柔性互联设备(flexible interconnected devices,FID)的中低压柔性互联配电网潮流模型。然后,构建三层协调规划模型,上层以低压FID年运行成本及台区变压器负载率的年方差最小为目标,中层以中压FID年运行成本及从上级电网年购电成本最小为目标,分别决策低压和中压FID的安装位置与容量,下层以各场景的从上级电网购电成本最小为目标优化系统运行,并采用自适应粒子群优化和二阶锥规划相结合的混合算法求解。最后,采用含高比例DG的IEEE 33节点配电网进行算例分析,通过柔性互联规划系统的年综合运行成本降低了19.01%,台区变压器负载率的年方差减少了82.59%,验证了所提规划模型的有效性。
彭寒梅, 尹棠, 肖千皓, 谭貌, 苏永新, 李辉. 高比例分布式电源配电网中低压柔性互联协调规划[J]. 中国电力, 2024, 57(8): 117-129.
Hanmei PENG, Tang YIN, Qianhao XIAO, Mao TAN, Yongxin SU, Hui LI. Coordinated Planning of Medium-Voltage and Low-Voltage Flexible Interconnection for Distribution Networks with High Proportion of Distributed Generation[J]. Electric Power, 2024, 57(8): 117-129.
台区 编号 | 交流 负荷/ kW | 直流 负荷/ kW | 交流 负荷 类型 | 变压器 额定容量/ kV·A | 光伏有 功容量/ kW | 台区 编号 | 交流 负荷/ kW | 直流 负荷/ kW | 交流 负荷 类型 | 变压器 额定容量/ kV·A | 光伏有 功容量/ kW | 台区 编号 | 交流 负荷/ kW | 直流 负荷/ kW | 交流 负荷 类型 | 变压器 额定容量/ kV·A | 光伏有 功容量/ kW | |||||||||||||||||
2 | 140 | 0 | E | 160 | 0 | 13 | 150 | 0 | D | 160 | 110 | 24 | 180 | 30 | D | 200 | 150 | |||||||||||||||||
3 | 130 | 0 | E | 160 | 0 | 14 | 150 | 0 | D | 160 | 40 | 25 | 110 | 0 | B | 160 | 0 | |||||||||||||||||
4 | 155 | 0 | D | 160 | 120 | 15 | 140 | 30 | C | 200 | 0 | 26 | 210 | 0 | E | 315 | 80 | |||||||||||||||||
5 | 160 | 30 | C | 200 | 0 | 16 | 200 | 0 | D | 200 | 40 | 27 | 140 | 30 | B | 160 | 30 | |||||||||||||||||
6 | 300 | 0 | D | 315 | 130 | 17 | 140 | 0 | B | 160 | 40 | 28 | 140 | 0 | A | 200 | 30 | |||||||||||||||||
7 | 180 | 30 | E | 200 | 0 | 18 | 150 | 0 | D | 160 | 120 | 29 | 130 | 0 | E | 160 | 0 | |||||||||||||||||
8 | 100 | 0 | B | 160 | 120 | 19 | 135 | 0 | E | 160 | 0 | 30 | 140 | 0 | E | 160 | 0 | |||||||||||||||||
9 | 130 | 30 | C | 160 | 0 | 20 | 140 | 0 | D | 160 | 30 | 31 | 180 | 0 | C | 200 | 40 | |||||||||||||||||
10 | 125 | 0 | E | 160 | 50 | 21 | 130 | 30 | B | 200 | 0 | 32 | 150 | 0 | D | 160 | 120 | |||||||||||||||||
11 | 290 | 0 | E | 315 | 0 | 22 | 140 | 0 | E | 160 | 30 | 33 | 130 | 0 | B | 200 | 0 | |||||||||||||||||
12 | 100 | 0 | A | 160 | 0 | 23 | 120 | 0 | E | 160 | 30 |
表 1 低压台区参数
Table 1 Parameters of low-voltage station area
台区 编号 | 交流 负荷/ kW | 直流 负荷/ kW | 交流 负荷 类型 | 变压器 额定容量/ kV·A | 光伏有 功容量/ kW | 台区 编号 | 交流 负荷/ kW | 直流 负荷/ kW | 交流 负荷 类型 | 变压器 额定容量/ kV·A | 光伏有 功容量/ kW | 台区 编号 | 交流 负荷/ kW | 直流 负荷/ kW | 交流 负荷 类型 | 变压器 额定容量/ kV·A | 光伏有 功容量/ kW | |||||||||||||||||
2 | 140 | 0 | E | 160 | 0 | 13 | 150 | 0 | D | 160 | 110 | 24 | 180 | 30 | D | 200 | 150 | |||||||||||||||||
3 | 130 | 0 | E | 160 | 0 | 14 | 150 | 0 | D | 160 | 40 | 25 | 110 | 0 | B | 160 | 0 | |||||||||||||||||
4 | 155 | 0 | D | 160 | 120 | 15 | 140 | 30 | C | 200 | 0 | 26 | 210 | 0 | E | 315 | 80 | |||||||||||||||||
5 | 160 | 30 | C | 200 | 0 | 16 | 200 | 0 | D | 200 | 40 | 27 | 140 | 30 | B | 160 | 30 | |||||||||||||||||
6 | 300 | 0 | D | 315 | 130 | 17 | 140 | 0 | B | 160 | 40 | 28 | 140 | 0 | A | 200 | 30 | |||||||||||||||||
7 | 180 | 30 | E | 200 | 0 | 18 | 150 | 0 | D | 160 | 120 | 29 | 130 | 0 | E | 160 | 0 | |||||||||||||||||
8 | 100 | 0 | B | 160 | 120 | 19 | 135 | 0 | E | 160 | 0 | 30 | 140 | 0 | E | 160 | 0 | |||||||||||||||||
9 | 130 | 30 | C | 160 | 0 | 20 | 140 | 0 | D | 160 | 30 | 31 | 180 | 0 | C | 200 | 40 | |||||||||||||||||
10 | 125 | 0 | E | 160 | 50 | 21 | 130 | 30 | B | 200 | 0 | 32 | 150 | 0 | D | 160 | 120 | |||||||||||||||||
11 | 290 | 0 | E | 315 | 0 | 22 | 140 | 0 | E | 160 | 30 | 33 | 130 | 0 | B | 200 | 0 | |||||||||||||||||
12 | 100 | 0 | A | 160 | 0 | 23 | 120 | 0 | E | 160 | 30 |
参数 | 数值 | 参数 | 数值 | 参数 | 数值 | |||||
中压B2B VSC贴现率 | 0.04 | 低压VSC贴现率 | 0.04 | 直流联络线贴现率 | 0.04 | |||||
中压B2B VSC经济使用年限/年 | 20 | 低压VSC经济使用年限/年 | 20 | 直流联络线经济使用年限/年 | 20 | |||||
中压B2B VSC单位容量投资成本/ (元·(kV·A)–1) | 600 | 低压VSC单位容量投资成本/ (元·(kV·A)–1) | 300 | 直流联络线单位长度的等值投资成本/ (元·km–1) | ||||||
中压B2B VSC单位容量年运行维护费用/(元·(kV·A)–1) | 10 | 低压VSC单位容量年运行维护费用/ (元·(kV·A)–1) | 5.5 | 直流联络线最大传输有功功率/kW | 150 | |||||
中压B2B VSC最大可安装容量/(kV·A) | 800 | 低压VSC最大可安装容量/(kV·A) | 150 | 直流联络线损耗系数 | 0.01 | |||||
中压B2B VSC单位安装容量/(kV·A) | 50 | 低压VSC单位安装容量/(kV·A) | 10 | 中、低压VSC损耗系数 | 0.02 | |||||
平时段[06:00—10:00、14:00— 16:00、20:00—22:00]购电价格/ (元·(kW·h)–1) | 谷时段[00:00—06:00、22:00— 24:00]购电价格/(元·(kW·h)–1) | 峰时段[10:00—14:00、16:00—20:00] 购电价格/(元·(kW·h)–1) |
表 2 参数设置
Table 2 Parameters setting
参数 | 数值 | 参数 | 数值 | 参数 | 数值 | |||||
中压B2B VSC贴现率 | 0.04 | 低压VSC贴现率 | 0.04 | 直流联络线贴现率 | 0.04 | |||||
中压B2B VSC经济使用年限/年 | 20 | 低压VSC经济使用年限/年 | 20 | 直流联络线经济使用年限/年 | 20 | |||||
中压B2B VSC单位容量投资成本/ (元·(kV·A)–1) | 600 | 低压VSC单位容量投资成本/ (元·(kV·A)–1) | 300 | 直流联络线单位长度的等值投资成本/ (元·km–1) | ||||||
中压B2B VSC单位容量年运行维护费用/(元·(kV·A)–1) | 10 | 低压VSC单位容量年运行维护费用/ (元·(kV·A)–1) | 5.5 | 直流联络线最大传输有功功率/kW | 150 | |||||
中压B2B VSC最大可安装容量/(kV·A) | 800 | 低压VSC最大可安装容量/(kV·A) | 150 | 直流联络线损耗系数 | 0.01 | |||||
中压B2B VSC单位安装容量/(kV·A) | 50 | 低压VSC单位安装容量/(kV·A) | 10 | 中、低压VSC损耗系数 | 0.02 | |||||
平时段[06:00—10:00、14:00— 16:00、20:00—22:00]购电价格/ (元·(kW·h)–1) | 谷时段[00:00—06:00、22:00— 24:00]购电价格/(元·(kW·h)–1) | 峰时段[10:00—14:00、16:00—20:00] 购电价格/(元·(kW·h)–1) |
台区 编号 | SVSCLI/ kV·A | β(t) | 台区 编号 | SVSCLI/ kV·A | β(t) | 台区 编号 | SVSCLI/ kV·A | β(t) | ||||||||
3 | 80 | 0.45 | 14 | 30 | 0.45 | 23 | 80 | 0.39 | ||||||||
4 | 10 | 0.46 | 15 | 40 | 0.58 | 26 | 60 | 0.45 | ||||||||
5 | 100 | 0.45 | 16 | 90 | 0.45 | 27 | 120 | 0.45 | ||||||||
6 | 150 | 0.45 | 17 | 90 | 0.46 | 28 | 20 | 0.56 | ||||||||
8 | 50 | 0.47 | 18 | 70 | 0.46 | 31 | 150 | 0.45 | ||||||||
9 | 120 | 0.45 | 20 | 10 | 0.45 | 32 | 70 | 0.45 | ||||||||
10 | 100 | 0.46 | 21 | 20 | 0.60 | 33 | 90 | 0.46 | ||||||||
13 | 80 | 0.45 | 22 | 30 | 0.46 |
表 3 台区低压VSC安装容量及变压器负载率
Table 3 The low-voltage VSC installation capacity and transformer load rate in substation areas
台区 编号 | SVSCLI/ kV·A | β(t) | 台区 编号 | SVSCLI/ kV·A | β(t) | 台区 编号 | SVSCLI/ kV·A | β(t) | ||||||||
3 | 80 | 0.45 | 14 | 30 | 0.45 | 23 | 80 | 0.39 | ||||||||
4 | 10 | 0.46 | 15 | 40 | 0.58 | 26 | 60 | 0.45 | ||||||||
5 | 100 | 0.45 | 16 | 90 | 0.45 | 27 | 120 | 0.45 | ||||||||
6 | 150 | 0.45 | 17 | 90 | 0.46 | 28 | 20 | 0.56 | ||||||||
8 | 50 | 0.47 | 18 | 70 | 0.46 | 31 | 150 | 0.45 | ||||||||
9 | 120 | 0.45 | 20 | 10 | 0.45 | 32 | 70 | 0.45 | ||||||||
10 | 100 | 0.46 | 21 | 20 | 0.60 | 33 | 90 | 0.46 | ||||||||
13 | 80 | 0.45 | 22 | 30 | 0.46 |
方案 | 中压柔性互联规划结果 | 台区互联组合集合规划结果 | FFIDL/ 万元 | DVLR | FFIDM/ 万元 | Fbuy/ 万元 | 网损/ 万元 | RAL/ % | RAM/ % | |||||||||
1 | 3.94 | 277.18 | 704.41 | 54.53 | 79.81 | 93.38 | ||||||||||||
2 | TS1 (500 kV·A)、TS3 (100 kV·A)、TS4 (100 kV·A) | 3.94 | 257.51 | 3.97 | 642.65 | 26.33 | 83.83 | 96.10 | ||||||||||
3 | {(3,24)、(4,5)、(5,6)、(7,8)、(8,9)、(8,29)、(13,31)、(14,15)、(18,33)、(20,21)、(24,25)、(26,27)、(31,32)} | 9.92 | 82.02 | 638.87 | 45.20 | 96.39 | 94.23 | |||||||||||
4 | TS1(700 kV·A)、TS3(200 kV·A) | {(3,24)、(4,5)、(5,6)、(8,9)、(13,31)、(14,15)、(17,18)、(18,33)、(20,21)、(23,24)、(26,27)、(31,32)} | 5.72 | 48.26 | 4.87 | 563.85 | 20.29 | 99.75 | 99.98 |
表 4 4种不同规划方案下的结果
Table 4 The planning results with 4 different planning schemes
方案 | 中压柔性互联规划结果 | 台区互联组合集合规划结果 | FFIDL/ 万元 | DVLR | FFIDM/ 万元 | Fbuy/ 万元 | 网损/ 万元 | RAL/ % | RAM/ % | |||||||||
1 | 3.94 | 277.18 | 704.41 | 54.53 | 79.81 | 93.38 | ||||||||||||
2 | TS1 (500 kV·A)、TS3 (100 kV·A)、TS4 (100 kV·A) | 3.94 | 257.51 | 3.97 | 642.65 | 26.33 | 83.83 | 96.10 | ||||||||||
3 | {(3,24)、(4,5)、(5,6)、(7,8)、(8,9)、(8,29)、(13,31)、(14,15)、(18,33)、(20,21)、(24,25)、(26,27)、(31,32)} | 9.92 | 82.02 | 638.87 | 45.20 | 96.39 | 94.23 | |||||||||||
4 | TS1(700 kV·A)、TS3(200 kV·A) | {(3,24)、(4,5)、(5,6)、(8,9)、(13,31)、(14,15)、(17,18)、(18,33)、(20,21)、(23,24)、(26,27)、(31,32)} | 5.72 | 48.26 | 4.87 | 563.85 | 20.29 | 99.75 | 99.98 |
台区 编号 | SVSCLI/ kV·A | β(t) | 台区 编号 | SVSCLI/ kV·A | β(t) | 台区 编号 | SVSCLI/ kV·A | β(t) | ||||||||
3 | 80 | 0.43 | 13 | 150 | 0.43 | 24 | 70 | 0.43 | ||||||||
4 | 50 | 0.43 | 14 | 110 | 0.52 | 25 | 60 | 0.38 | ||||||||
5 | 70 | 0.51 | 15 | 150 | 0.60 | 26 | 110 | 0.43 | ||||||||
6 | 150 | 0.43 | 16 | 130 | 0.43 | 27 | 100 | 0.43 | ||||||||
7 | 140 | 0.69 | 17 | 120 | 0.65 | 28 | 40 | 0.52 | ||||||||
8 | 130 | 0.68 | 18 | 150 | 0.43 | 29 | 70 | 0.53 | ||||||||
9 | 150 | 0.45 | 20 | 30 | 0.43 | 30 | 100 | 0.64 | ||||||||
10 | 150 | 0.44 | 21 | 80 | 0.55 | 31 | 140 | 0.43 | ||||||||
11 | 150 | 0.60 | 22 | 100 | 0.67 | 32 | 90 | 0.43 | ||||||||
12 | 150 | 0.70 | 23 | 30 | 0.43 | 33 | 110 | 0.43 |
表 5 中低压柔性互联规划方法1下的结果
Table 5 The planning results with medium-voltage and low-voltage flexible interconnection planning method 1
台区 编号 | SVSCLI/ kV·A | β(t) | 台区 编号 | SVSCLI/ kV·A | β(t) | 台区 编号 | SVSCLI/ kV·A | β(t) | ||||||||
3 | 80 | 0.43 | 13 | 150 | 0.43 | 24 | 70 | 0.43 | ||||||||
4 | 50 | 0.43 | 14 | 110 | 0.52 | 25 | 60 | 0.38 | ||||||||
5 | 70 | 0.51 | 15 | 150 | 0.60 | 26 | 110 | 0.43 | ||||||||
6 | 150 | 0.43 | 16 | 130 | 0.43 | 27 | 100 | 0.43 | ||||||||
7 | 140 | 0.69 | 17 | 120 | 0.65 | 28 | 40 | 0.52 | ||||||||
8 | 130 | 0.68 | 18 | 150 | 0.43 | 29 | 70 | 0.53 | ||||||||
9 | 150 | 0.45 | 20 | 30 | 0.43 | 30 | 100 | 0.64 | ||||||||
10 | 150 | 0.44 | 21 | 80 | 0.55 | 31 | 140 | 0.43 | ||||||||
11 | 150 | 0.60 | 22 | 100 | 0.67 | 32 | 90 | 0.43 | ||||||||
12 | 150 | 0.70 | 23 | 30 | 0.43 | 33 | 110 | 0.43 |
1 |
PAMSHETTI V B, SINGH S, THAKUR A K, et al. Cooperative operational planning model for distributed energy resources with soft open point in active distribution network[J]. IEEE Transactions on Industry Applications, 2023, 59 (2): 2140- 2151.
DOI |
2 | 汪泽州, 张明明, 钱峰强, 等. 含光伏接入的中压配电网集中调控优化策略[J]. 中国电力, 2023, 56 (2): 15- 22. |
WANG Zezhou, ZHANG Mingming, QIAN Fengqiang, et al. Centralized regulation and optimization strategy for MV distribution network with PV integration[J]. Electric Power, 2023, 56 (2): 15- 22. | |
3 |
JIANG X, ZHOU Y, MING W L, et al. An overview of soft open points in electricity distribution networks[J]. IEEE Transactions on Smart Grid, 2022, 13 (3): 1899- 1910.
DOI |
4 | 谢学渊, 刘潇潇, 李超, 等. 考虑分布式电源和电动汽车集群调度的配电网络重构[J]. 中国电力, 2023, 56 (1): 119- 125. |
XIE Xueyuan, LIU Xiaoxiao, LI Chao, et al. Distribution network reconfiguration considering distributed generation and electric vehicle cluster scheduling[J]. Electric Power, 2023, 56 (1): 119- 125. | |
5 |
胡珺如, 窦晓波, 李晨, 等. 面向中低压配电网的分布式协同无功优化策略[J]. 电力系统自动化, 2021, 45 (22): 47- 54.
DOI |
HU Junru, DOU Xiaobo, LI Chen, et al. Distributed cooperative reactive power optimization strategy for medium-and low-voltage distribution network[J]. Automation of Electric Power Systems, 2021, 45 (22): 47- 54.
DOI |
|
6 |
HUANG W J, ZHENG W Y, HILL D J. Distribution network reconfiguration for short-term voltage stability enhancement: an efficient deep learning approach[J]. IEEE Transactions on Smart Grid, 2021, 12 (6): 5385- 5395.
DOI |
7 | 刘科研, 盛万兴, 赵鹏杰, 等. 信息物理环境下基于电力电子变压器的跨台区光伏消纳策略[J]. 电力自动化设备, 2020, 40 (12): 66- 72, 87, 73-75. |
LIU Keyan, SHENG Wanxing, ZHAO Pengjie, et al. Photovoltaic consumption strategy across multiple transformer districts based on PET under cyber physical system[J]. Electric Power Automation Equipment, 2020, 40 (12): 66- 72, 87, 73-75. | |
8 | 董昱, 董存, 于若英, 等. 基于线性最优潮流的电力系统新能源承载能力分析[J]. 中国电力, 2022, 55 (3): 1- 8. |
DONG Yu, DONG Cun, YU Ruoying, et al. Renewable energy capacity assessment in power system based on linearized OPF[J]. Electric Power, 2022, 55 (3): 1- 8. | |
9 | 李昀宸, 吕志鹏, 刘文龙, 等. 柔性互联配电台区联合优化配置[J]. 高电压技术, 2023, 49 (10): 4223- 4231. |
LI Yunchen, LÜ Zhipeng, LIU Wenlong, et al. Coordinated optimize configuration of flexible interconnection of distribution station area[J]. High Voltage Engineering, 2023, 49 (10): 4223- 4231. | |
10 | 孙国强, 徐广开, 沈培锋, 等. 规模化电动汽车负荷的柔性台区协同经济调度[J]. 电网技术, 2020, 44 (11): 4395- 4404. |
SUN Guoqiang, XU Guangkai, SHEN Peifeng, et al. Coordinated economic dispatch of flexible district for large-scale electric vehicle load[J]. Power System Technology, 2020, 44 (11): 4395- 4404. | |
11 |
YANG Z, YANG F, MIN H, et al. A local control strategy for voltage fluctuation suppression in a flexible interconnected distribution station area based on soft open point[J]. Sustainability, 2023, 15 (5): 4424.
DOI |
12 | 林文键, 朱振山, 温步瀛. 含电动汽车和智能软开关的配电网动态重构[J]. 电力自动化设备, 2022, 42 (10): 202- 209, 217. |
LIN Wenjian, ZHU Zhenshan, WEN Buying. Dynamic reconfiguration of distribution network with electric vehicles and soft open point[J]. Electric Power Automation Equipment, 2022, 42 (10): 202- 209, 217. | |
13 | 王成山, 宋关羽, 李鹏, 等. 考虑分布式电源运行特性的有源配电网智能软开关SOP规划方法[J]. 中国电机工程学报, 2017, 37 (7): 1889- 1897. |
WANG Chengshan, SONG Guanyu, LI Peng, et al. Optimal configuration of soft open point for active distribution network considering the characteristics of distributed generation[J]. Proceedings of the CSEE, 2017, 37 (7): 1889- 1897. | |
14 |
马丽, 薛飞, 石季英, 等. 有源配电网分布式电源与智能软开关三层协调规划模型[J]. 电力系统自动化, 2018, 42 (11): 86- 93.
DOI |
MA Li, XUE Fei, SHI Jiying, et al. Tri-level coordinated planning model of distributed generator and intelligent soft open point for active distribution network[J]. Automation of Electric Power Systems, 2018, 42 (11): 86- 93.
DOI |
|
15 | 徐振东, 张晓, 徐波, 等. 计及智能储能软开关的配电网扩展规划[J]. 智慧电力, 2022, 50 (5): 48- 55. |
XU Zhendong, ZHANG Xiao, XU Bo, et al. Planning of distribution network expansion considering SOP integrated with ESS[J]. Smart Power, 2022, 50 (5): 48- 55. | |
16 | 徐来烽, 张沈习, 叶琳浩, 等. 考虑动态重构和智能软开关接入的配电网源网荷储联合规划[J]. 南方电网技术, 2024, 18 (4): 130- 140. |
XU Laifeng, ZHANG Shenxi, YE Linhao, et al. Joint planning of source-network-load-storage in distribution network considering dynamic reconfiguration and intelligent soft open point[J]. Southern Power System Technology, 2024, 18 (4): 130- 140. | |
17 |
黄志强, 陈业伟, 毛志鹏, 等. 柔性多状态开关与分布式储能系统联合接入规划[J]. 电力系统自动化, 2022, 46 (14): 29- 37.
DOI |
HUANG Zhiqiang, CHEN Yewei, MAO Zhipeng, et al. Joint access planning of soft open point and distributed energy storage system[J]. Automation of Electric Power Systems, 2022, 46 (14): 29- 37.
DOI |
|
18 | WU H B, HE Y, LIN X S, et al. Optimal configuration of flexible interconnection devices for transferring photovoltaic power in active distribution network[J]. Journal of Electrical Engineering & Technology, 2023, 18 (2): 793- 804. |
19 |
WU T H, ZHENG Y P, WU H B, et al. Power transfer and multi-control mode of a distribution network based on a flexible interconnected device[J]. IEEE Access, 2019, 7, 148326- 148335.
DOI |
20 | 徐旖旎, 刘海涛, 熊雄, 等. 低压配电台区柔性互联关键技术与发展模式[J]. 中国电机工程学报, 2022, 42 (11): 3986- 4001. |
XU Yini, LIU Haitao, XIONG Xiong, et al. Key technologies and development modes of flexible interconnection of low-voltage distribution station area[J]. Proceedings of the CSEE, 2022, 42 (11): 3986- 4001. | |
21 |
祖国强, 郝子源, 黄旭, 等. 考虑低压台区柔性互联的配电网最大供电能力[J]. 电力系统自动化, 2023, 47 (7): 84- 93.
DOI |
ZU Guoqiang, HAO Ziyuan, HUANG Xu, et al. Total supply capability of distribution network considering flexible interconnection of low-voltage distribution station areas[J]. Automation of Electric Power Systems, 2023, 47 (7): 84- 93.
DOI |
|
22 |
MUDALIYAR S, MISHRA S. Real-time coordinated control of low-voltage DC distribution network with soft opening point[J]. IEEE Transactions on Power Electronics, 2021, 36 (6): 7123- 7137.
DOI |
23 | 曹昉, 郑金钊, 郑怡馨. 基于VSC的优质光伏资源区配电台区柔性互联规划方法[J]. 南方电网技术, 2023, 17 (1): 14- 25. |
CAO Fang, ZHENG Jinzhao, ZHENG Yixin. VSC-based flexible interconnection planning method for distribution station areas of high-quality photovoltaic resource[J]. Southern Power System Technology, 2023, 17 (1): 14- 25. | |
24 | 张忠会, 雷大勇, 李俊, 等. 基于自适应ε-支配多目标粒子群算法的含SOP的主动配电网源–网–荷–储双层协同规划模型[J]. 电网技术, 2022, 46 (6): 2199- 2212. |
ZHANG Zhonghui, LEI Dayong, LI Jun, et al. Source-network-load-storage bi-level collaborative planning model of active distribution network with SOP based on adaptive ε-dominating multi-objective particle swarm optimization algorithm[J]. Power System Technology, 2022, 46 (6): 2199- 2212. | |
25 | 孙彩, 李奇, 邱宜彬, 等. 余电上网/制氢方式下微电网系统全生命周期经济性评估[J]. 电网技术, 2021, 45 (12): 4650- 4660. |
SUN Cai, LI Qi, QIU Yibin, et al. Economic evaluation of whole life cycle of the micro-grid system under the mode of residual power connection/hydrogen production[J]. Power System Technology, 2021, 45 (12): 4650- 4660. | |
26 | 张忠会, 雷大勇, 蒋昌辉, 等. 基于二阶锥规划和NNC法的交直流混合配电网双层规划模型及其求解方法[J]. 中国电机工程学报, 2023, 43 (1): 70- 85. |
ZHANG Zhonghui, LEI Dayong, JIANG Changhui, et al. A bi-level planning model and its solution method of AC/DC hybrid distribution network based on second-order cone programming and NNC method[J]. Proceedings of the CSEE, 2023, 43 (1): 70- 85. |
[1] | 何涂哲秋, 徐子东, 车欣, 张镇勇. 基于电力云边协同的非侵入式Modbus TCP协议安全增强方法[J]. 中国电力, 2024, 57(9): 53-60. |
[2] | 许彦平, 白婕, 施浩波, 秦晓辉, 张彦涛. 基于凸包算法的极端运行方式提取方法[J]. 中国电力, 2024, 57(7): 30-39. |
[3] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王焕昌, 张帅, 赵凤展. 计及运行灵活性的中压配电系统源-网-储协同扩展规划[J]. 中国电力, 2024, 57(7): 98-108. |
[4] | 凡鹏飞, 李宝琴, 侯江伟, 李嵘, 宋崇明, 林凯骏. 配电网分布式电源经济可承载力评估[J]. 中国电力, 2024, 57(7): 196-202. |
[5] | 王家武, 赵佃云, 刘长锋, 陈康, 张玉敏. 基于目标级联法的多主体主动配电网自治协同优化[J]. 中国电力, 2024, 57(7): 214-226. |
[6] | 罗美玲, 马英, 黄伟兵, 孟令昆, 于晓军, 郑涛. 计及电压幅值检测延时及相位跳变的IIDG故障电流解析计算[J]. 中国电力, 2024, 57(2): 72-81. |
[7] | 叶畅, 伊华茂, 朱炯达, 赵晶晶, 吴炼. 考虑灵活性供需平衡及响应速度的分布式电源集群划分方法[J]. 中国电力, 2023, 56(2): 150-156. |
[8] | 谢学渊, 刘潇潇, 李超, 胡资鹏, 刘铠, 陈涛. 考虑分布式电源和电动汽车集群调度的配电网络重构[J]. 中国电力, 2023, 56(1): 119-125. |
[9] | 张黎明, 李浩, 吴亚雄, 高崇, 张俊潇, 刘涌. 基于运行优化的含储能电力系统可靠性评估方法[J]. 中国电力, 2022, 55(9): 23-28. |
[10] | 杨作祥, 王晶晶, 吴江, 唐莎莎, 侯斌. 计及源荷不确定性的配电网综合节能潜力评估方法[J]. 中国电力, 2022, 55(8): 151-156,164. |
[11] | 党彬, 邹启群, 张滨, 付东, 尤梦凯, 乐健. 基于HSA-PSO的配电网源-储协同优化控制方法[J]. 中国电力, 2022, 55(4): 63-69. |
[12] | 赵一男, 宋斌, 钱振宇, 李顺昕. 未来配电网的分布式形态及规划方法[J]. 中国电力, 2022, 55(4): 70-77. |
[13] | 陈卫东, 郭敏, 吴宁, 奉斌. 基于图像匹配的微电网负荷响应分布式电源波动控制方法[J]. 中国电力, 2022, 55(3): 57-63,73. |
[14] | 杨亘烨, 孙荣富, 丁然, 徐海翔, 陈璨, 吴林林, 陈奇芳, 夏明超. 计及光伏多状态调节能力的配电网多时间尺度电压优化[J]. 中国电力, 2022, 55(3): 105-114. |
[15] | 张燕, 乔松博, 徐奇锋, 俞静. 基于纳什议价理论的分布式绿色电力交易优化分析[J]. 中国电力, 2022, 55(12): 168-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||