[1] 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(3): 1–11 ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54(3): 1–11 [2] 程林, 张靖, 黄仁乐, 等. 基于多能互补的综合能源系统多场景规划案例分析[J]. 电力自动化设备, 2017, 37(6): 282–287 CHENG Lin, ZHANG Jing, HUANG Rele, et al. Case analysis of multi-scenario planning based on multi-energy complementation for integrated energy system[J]. Electric Power Automation Equipment, 2017, 37(6): 282–287 [3] 丁明, 姚宇亮, 李林, 等. 分布式光伏并网装置的研制[J]. 电力自动化设备, 2018, 38(3): 1–6, 15 DING Ming, YAO Yuliang, LI Lin, et al. Development of distributed photovoltaic grid-connection device[J]. Electric Power Automation Equipment, 2018, 38(3): 1–6, 15 [4] 曹子健, 林今, 宋永华. 含分布式电源及灵活负荷的配电网电量合约市场[J]. 电网技术, 2019, 43(7): 2430–2440 CAO Zijian, LIN Jin, SONG Yonghua. Electricity contract market for distribution network with distributed generations and flexible loads[J]. Power System Technology, 2019, 43(7): 2430–2440 [5] 王深, 黄国和, 刘政平. 多重不确定条件下的乌鲁木齐分布式绿色电力规划研究[J]. 太阳能学报, 2018, 39(11): 3090–3096 WANG Shen, HUANG Guohe, LIU Zhengping. Urumqi's distributed power generation planning of clean power constrained by mult-uncertainty[J]. Acta Energiae Solaris Sinica, 2018, 39(11): 3090–3096 [6] 魏利屾, 冯宇昂, 方家琨, 等. 现货市场环境下新能源并网接入对市场出清的影响[J]. 上海交通大学学报, 2021, 55(12): 1631–1639 WEI Lishen, FENG Yuang, FANG Jiakun, et al. Impact of renewable energy integration on market-clearing results in spot market environment[J]. Journal of Shanghai Jiao Tong University, 2021, 55(12): 1631–1639 [7] 韩国栋, 吉培荣, 王飞. 考虑负荷调节的分布式市场交易模式[J]. 中国电力, 2022, 55(10): 178–184 HAN Guodong, JI Peirong, WANG Fei. Research on distributed transaction mode considering load adjustment[J]. Electric Power, 2022, 55(10): 178–184 [8] 姜明军, 任明远, 徐兰兰, 等. 计及分布式电源不确定性的多微网鲁棒博弈研究[J]. 可再生能源, 2021, 39(4): 533–540 JIANG Mingjun, REN Mingyuan, XU Lanlan, et al. Research on robust game in multi-microgrid considering distributed generation uncertainty[J]. Renewable Energy Resources, 2021, 39(4): 533–540 [9] 李彬, 覃秋悦, 祁兵, 等. 基于区块链的分布式能源交易方案设计综述[J]. 电网技术, 2019, 43(3): 961–972 LI Bin, QIN Qiuyue, QI Bing, et al. Design of distributed energy trading scheme based on blockchain[J]. Power System Technology, 2019, 43(3): 961–972 [10] 龚诚嘉锐, 林顺富, 边晓燕, 等. 基于多主体主从博弈的负荷聚合商经济优化模型[J]. 电力系统保护与控制, 2022, 50(2): 30–40 GONG Chengjiarui, LIN Shunfu, BIAN Xiaoyan, et al. Economic optimization model of a load aggregator based on the multi-agent Stackelberg game[J]. Power System Protection and Control, 2022, 50(2): 30–40 [11] 王帅, 帅轩越, 王智冬, 等. 基于纳什议价方法的虚拟电厂分布式多运营主体电能交易机制[J]. 电力建设, 2022, 43(3): 141–148 WANG Shuai, SHUAI Xuanyue, WANG Zhidong, et al. Distributed electricity trading mechanism of multi-operator virtual power plant based on Nash bargaining method[J]. Electric Power Construction, 2022, 43(3): 141–148 [12] MASHHOUR E, MOGHADDAS-TAFRESHI S M. Bidding strategy of virtual power plant for participating in energy and spinning reserve markets-part II: numerical analysis[J]. IEEE Transactions on Power Systems, 2011, 26(2): 957–964. [13] RAHIMIYAN M, BARINGO L. Strategic bidding for a virtual power plant in the day-ahead and real-time markets: a price-taker robust optimization approach[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2676–2687. [14] 马腾飞, 裴玮, 肖浩, 等. 基于纳什谈判理论的风–光–氢多主体能源系统合作运行方法[J]. 中国电机工程学报, 2021, 41(1): 25–39,395 MA Tengfei, PEI Wei, XIAO Hao, et al. Cooperative operation method for wind-solar-hydrogen multi-agent energy system based on Nash bargaining theory[J]. Proceedings of the CSEE, 2021, 41(1): 25–39,395 [15] 方燕琼, 甘霖, 艾芊, 等. 基于主从博弈的虚拟电厂双层竞标策略[J]. 电力系统自动化, 2017, 41(14): 61–69 FANG Yanqiong, GAN Lin, AI Qian, et al. Stackelberg game based Bi-level bidding strategy for virtual power plant[J]. Automation of Electric Power Systems, 2017, 41(14): 61–69 [16] 赵力航, 常伟光, 杨敏, 等. 电力市场环境下虚拟电厂两阶段能量经济优化调度[J]. 中国电力, 2022, 55(10): 14–22 ZHAO Lihang, CHANG Weiguang, YANG Min, et al. Two-stage energy economic optimal dispatch of virtual power plant in deregulated electricity market[J]. Electric Power, 2022, 55(10): 14–22 [17] 周博, 吕林, 高红均, 等. 多虚拟电厂日前鲁棒交易策略研究[J]. 电网技术, 2018, 42(8): 2694–2703 ZHOU Bo, Lü Lin, GAO Hongjun, et al. Robust day-ahead trading strategy for multiple virtual power plants[J]. Power System Technology, 2018, 42(8): 2694–2703 [18] 顾欣, 王琦, 胡云龙, 等. 基于纳什议价的多微网综合能源系统分布式低碳优化运行策略[J]. 电网技术, 2022, 46(4): 1464–1482 GU Xin, WANG Qi, HU Yunlong, et al. Distributed low-carbon optimal operation strategy of multi-microgrids integrated energy system based on Nash bargaining[J]. Power System Technology, 2022, 46(4): 1464–1482 [19] SHUAI X Y, WANG X L, GUO H, et al. Cooperative operation mechanism of multi-energy microgrids based on Nash bargaining method[J]. IOP Conference Series:Earth and Environmental Science, 2021, 769(4): 042121. [20] 吴静. 分布式资源聚合虚拟电厂多维交易优化模型研究[D]. 北京: 华北电力大学(北京), 2021 WU Jing. Research on multi-dimensional transaction optimization model of virtual power plant aggregated by distributed resources[D]. Beijing: North China Electric Power University, 2021. [21] WANG H, HUANG J W. Incentivizing energy trading for interconnected microgrids[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 2647–2657. [22] FAN S L, AI Q, PIAO L J. Bargaining-based cooperative energy trading for distribution company and demand response[J]. Applied Energy, 2018, 226: 469–482. [23] BOYD S. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2010, 3(1): 1–122.
|