中国电力 ›› 2024, Vol. 57 ›› Issue (1): 140-147.DOI: 10.11930/j.issn.1004-9649.202309093
张俊成1(), 黎敏1(
), 刘志文2(
), 谭靖1, 陶毅刚1, 罗天禄1
收稿日期:
2023-09-20
出版日期:
2024-01-28
发布日期:
2024-01-23
作者简介:
张俊成(1983—),男,硕士,高级工程师,从事配网规划研究,E-mail:42063019@qq.com基金资助:
Juncheng ZHANG1(), Min LI1(
), Zhiwen LIU2(
), Jing TAN1, Yigang TAO1, Tianlu LUO1
Received:
2023-09-20
Online:
2024-01-28
Published:
2024-01-23
Supported by:
摘要:
可调负荷、电动汽车等各种负荷侧资源快速发展,对其进行精准调控是目前重要的研究热点。为充分发挥配电网柔性负荷的调节能力,提出一种基于改进交替方向乘子法的配电网柔性负荷分层集群调控方法。首先,采用综合层次聚类算法对柔性负荷进行分层集群;其次,基于纳什谈判理论,将原问题分解为成本最小化和收益分配2个子问题,建立配电网柔性负荷集群调控模型;然后,引入自适应变参数加速因子,提出改进的交替方向乘子法;最后,通过模拟算例验证所提方法的有效性。结果表明,所提方法能够有效实现大规模柔性负荷接入情况下的集群调控,收敛性能较常规方法有所提高。
张俊成, 黎敏, 刘志文, 谭靖, 陶毅刚, 罗天禄. 基于改进交替方向乘子法的配电网柔性负荷分层集群调控方法[J]. 中国电力, 2024, 57(1): 140-147.
Juncheng ZHANG, Min LI, Zhiwen LIU, Jing TAN, Yigang TAO, Tianlu LUO. Hierarchical Cluster Control Method for Flexible Load in Distribution Network Based on Improved Alternating Direction Multiplier Method[J]. Electric Power, 2024, 57(1): 140-147.
接入类型 | 接入数量/个 | 总容量/kW | ||||
常规负荷 | 200 | 1000 | ||||
柔性负荷 | 温控型负荷 | 160 | 800 | |||
可削减负荷 | 160 | 800 | ||||
电动汽车充电桩 | 75 | 750 | ||||
分布式储能装置 | 1 | 1200 |
表 1 负荷、储能接入情况
Table 1 Load and energy storage access
接入类型 | 接入数量/个 | 总容量/kW | ||||
常规负荷 | 200 | 1000 | ||||
柔性负荷 | 温控型负荷 | 160 | 800 | |||
可削减负荷 | 160 | 800 | ||||
电动汽车充电桩 | 75 | 750 | ||||
分布式储能装置 | 1 | 1200 |
指标 | 本文方法 | k-means | ||
轮廓系数 | 0.963 | 0.782 | ||
紧密度/kW | 0.334 | 0.768 | ||
分割度/kW | 0.826 | 0.659 |
表 2 聚类指标对比
Table 2 Comparison of clustering indicators
指标 | 本文方法 | k-means | ||
轮廓系数 | 0.963 | 0.782 | ||
紧密度/kW | 0.334 | 0.768 | ||
分割度/kW | 0.826 | 0.659 |
算法 | 是否收敛 | 收敛时间/s | ||
分散式调控+ADMM | 否 | — | ||
集群后调控+ADMM | 是 | 253 | ||
集群后调控+改进ADMM | 是 | 14 |
表 3 3种算法收敛速度对比
Table 3 Comparison of convergence speed of three algorithms
算法 | 是否收敛 | 收敛时间/s | ||
分散式调控+ADMM | 否 | — | ||
集群后调控+ADMM | 是 | 253 | ||
集群后调控+改进ADMM | 是 | 14 |
类型 | 参与调控前日成本/元 | 参与调控后日成本/元 | ||
温控型负荷 | 379.96 | 345.14 | ||
可削减负荷 | 352.27 | 322.05 | ||
电动汽车充电桩 | 316.52 | 291.68 | ||
分布式储能 | 0 | –54.06 |
表 4 各类型柔性负荷与储能成本
Table 4 Cost of various types of flexible loads and energy storage
类型 | 参与调控前日成本/元 | 参与调控后日成本/元 | ||
温控型负荷 | 379.96 | 345.14 | ||
可削减负荷 | 352.27 | 322.05 | ||
电动汽车充电桩 | 316.52 | 291.68 | ||
分布式储能 | 0 | –54.06 |
类型 | 高方案/元 | 中方案/元 | 低方案/元 | |||
温控型负荷 | 343.08 | 345.14 | 346.95 | |||
可削减负荷 | 319.27 | 322.05 | 323.86 | |||
电动汽车充电桩 | 290.42 | 291.68 | 293.50 | |||
分布式储能 | –60.43 | –54.06 | –49.71 |
表 5 不同分时电价下各类型柔性负荷与储能成本
Table 5 Cost of various types of flexible loads and energy storage under different time of use electricity prices
类型 | 高方案/元 | 中方案/元 | 低方案/元 | |||
温控型负荷 | 343.08 | 345.14 | 346.95 | |||
可削减负荷 | 319.27 | 322.05 | 323.86 | |||
电动汽车充电桩 | 290.42 | 291.68 | 293.50 | |||
分布式储能 | –60.43 | –54.06 | –49.71 |
1 | 宁剑, 江长明, 张哲, 等. 可调节负荷资源参与电网调控的思考与技术实践[J]. 电力系统自动化, 2020, 44 (17): 1- 8. |
NING Jian, JIANG Changming, ZHANG Zhe, et al. Thinking and technical practice of adjustable load resources participating in dispatching and control of power grid[J]. Automation of Electric Power Systems, 2020, 44 (17): 1- 8. | |
2 |
齐宁, 程林, 田立亭, 等. 考虑柔性负荷接入的配电网规划研究综述与展望[J]. 电力系统自动化, 2020, 44 (10): 193- 207.
DOI |
QI Ning, CHENG Lin, TIAN Liting, et al. Review and prospect of distribution network planning research considering access of flexible load[J]. Automation of Electric Power Systems, 2020, 44 (10): 193- 207.
DOI |
|
3 | 孙银锋, 夏大朋, 高梓淳. 基于蒙特卡罗模拟法的柔性交直流混联配电网概率潮流计算[J]. 东北电力大学学报, 2023, 43 (2): 82- 92. |
SUN Yinfeng, XIA Dapeng, GAO Zichun. Flexible AC/DC hybrid distribution network based on Monte Carlo simulation probabilistic load flow calculation[J]. Journal of Northeast Electric Power University, 2023, 43 (2): 82- 92. | |
4 |
OKUR Ö, VOULIS N, HEIJNEN P, et al. Aggregator-mediated demand response: minimizing imbalances caused by uncertainty of solar generation[J]. Applied Energy, 2019, 247, 426- 437.
DOI |
5 |
BRUNINX K, PANDŽIĆ H, LE CADRE H, et al. On the interaction between aggregators, electricity markets and residential demand response providers[J]. IEEE Transactions on Power Systems, 2020, 35 (2): 840- 853.
DOI |
6 | CHEN S J, CHEN Q X, XU Y. Strategic bidding and compensation mechanism for a load aggregator with direct thermostat control capabilities[J]. IEEE Transactions on Smart Grid, 2018, 9 (3): 2327- 2336. |
7 | 朱怡莹, 周荣生, 罗龙波. 考虑需求响应与光伏不确定性的电力系统经济调度[J]. 太阳能学报, 2023, 44 (1): 62- 68. |
ZHU Yiying, ZHOU Rongsheng, LUO Longbo. Economic dispatch of power system considering demand response and PV uncertainty[J]. Acta Energiae Solaris Sinica, 2023, 44 (1): 62- 68. | |
8 |
PENG C, ZOU J X, LIAN L, et al. An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator’s benefits[J]. Applied Energy, 2017, 190, 591- 599.
DOI |
9 | 李婧, 徐胜蓝, 万灿, 等. 基于自适应k-means++算法的电力负荷特性分析[J]. 南方电网技术, 2019, 13 (2): 13- 19. |
LI Jing, XU Shenglan, WAN Can, et al. Electricity load characteristics analysis based on adaptive k-means ++ algorithm[J]. Southern Power System Technology, 2019, 13 (2): 13- 19. | |
10 | 孙毅, 毛烨华, 李泽坤, 等. 面向电力大数据的用户负荷特性和可调节潜力综合聚类方法[J]. 中国电机工程学报, 2021, 41 (18): 6259- 6270. |
SUN Yi, MAO Yehua, LI Zekun, et al. Comprehensive clustering method of user load characteristics and adjustable potential for electric power big data[J]. Proceedings of the CSEE, 2021, 41 (18): 6259- 6270. | |
11 | 李晨希, 史佳琪, 刘念, 等. 基于复杂网络的电力用户群体演化分析模型[J]. 中国电机工程学报, 2022, 42 (16): 5835- 5847. |
LI Chenxi, SHI Jiaqi, LIU Nian, et al. Analysis model of power user group evolution based on complex network[J]. Proceedings of the CSEE, 2022, 42 (16): 5835- 5847. | |
12 | 刘春阳, 李康平, 纪陵, 等. 基于聚类-估计联动的需求响应集群基线负荷估计方法[J]. 电力系统自动化, 2023, 47 (2): 79- 87. |
LIU Chunyang, LI Kangping, JI Ling, et al. Clustering-estimation linkage based estimation method for aggregated baseline loads of demand response[J]. Automation of Electric Power Systems, 2023, 47 (2): 79- 87. | |
13 |
ALIZADEH M, SCAGLIONE A, APPLEBAUM A, et al. Reduced-order load models for large populations of flexible appliances[J]. IEEE Transactions on Power Systems, 2015, 30 (4): 1758- 1774.
DOI |
14 | 黄昌达, 赵鑫. 基于凝聚层次聚类的电力用户服务方法[J]. 电力需求侧管理, 2023, 25 (2): 112- 116. |
HUANG Changda, ZHAO Xin. Power user service method based on agglomerative hierarchical clustering[J]. Power Demand Side Management, 2023, 25 (2): 112- 116. | |
15 | 孙玉芹, 王松雷, 黄冬梅, 等. 考虑簇间重叠关系的负荷曲线多重聚类集成算法[J]. 电网技术, 2022, 46 (5): 1982- 1989. |
SUN Yuqin, WANG Songlei, HUANG Dongmei, et al. Multi-cluster integration algorithm of load curve considering overlapping relationship between clusters[J]. Power System Technology, 2022, 46 (5): 1982- 1989. | |
16 | 严强, 李扬, 樊友杰, 等. 基于加权表决集成聚类的居民用电行为回归分析[J]. 电网技术, 2021, 45 (11): 4435- 4443. |
YAN Qiang, LI Yang, FAN Youjie, et al. Regression analysis of residents' electricity consumption behavior based on weighted voting integrated clustering[J]. Power System Technology, 2021, 45 (11): 4435- 4443. | |
17 | 张洁, 夏飞, 袁博, 等. 基于特征优选策略的居民用电行为聚类方法[J]. 电力系统自动化, 2022, 46 (6): 153- 159. |
ZHANG Jie, XIA Fei, YUAN Bo, et al. Clustering method for residential electricity consumption behavior based on feature optimization strategy[J]. Automation of Electric Power Systems, 2022, 46 (6): 153- 159. | |
18 |
李明轩, 齐步洋, 贺大玮. 工业园区需求响应资源聚合优化配置方法[J]. 电网技术, 2022, 46 (9): 3543- 3549.
DOI |
LI Mingxuan, QI Buyang, HE Dawei. Optimal allocation method of demand response resource aggregation in industrial park[J]. Power System Technology, 2022, 46 (9): 3543- 3549.
DOI |
|
19 |
PAPADASKALOPOULOS D, STRBAC G. Nonlinear and randomized pricing for distributed management of flexible loads[J]. IEEE Transactions on Smart Grid, 2016, 7 (2): 1137- 1146.
DOI |
20 |
杨秀, 傅广努, 刘方, 等. 考虑多重因素的空调负荷聚合响应潜力评估及控制策略研究[J]. 电网技术, 2022, 46 (2): 699- 708.
DOI |
YANG Xiu, FU Guangnu, LIU Fang, et al. Study on evaluation and control strategy of air conditioning load aggregation response potential considering multiple factors[J]. Power System Technology, 2022, 46 (2): 699- 708.
DOI |
|
21 |
XU Z W, CALLAWAY D S, HU Z C, et al. Hierarchical coordination of heterogeneous flexible loads[J]. IEEE Transactions on Power Systems, 2016, 31 (6): 4206- 4216.
DOI |
22 |
赵冬梅, 宋原, 王云龙, 等. 考虑柔性负荷响应不确定性的多时间尺度协调调度模型[J]. 电力系统自动化, 2019, 43 (22): 21- 30.
DOI |
ZHAO Dongmei, SONG Yuan, WANG Yunlong, et al. Coordinated scheduling model with multiple time scales considering response uncertainty of flexible load[J]. Automation of Electric Power Systems, 2019, 43 (22): 21- 30.
DOI |
|
23 |
潘建辉, 张宁, 雍培, 等. 面向海量灵活性资源的两阶段分布式协同调度方法[J]. 电力系统自动化, 2023, 47 (15): 67- 79.
DOI |
PAN Jianhui, ZHANG Ning, YONG Pei, et al. Two-stage distributed collaborative dispatching method for massive flexible resources[J]. Automation of Electric Power Systems, 2023, 47 (15): 67- 79.
DOI |
|
24 | TULABING R S, MITCHELL B C, COVIC G A, et al. Localized demand control of flexible devices for peak load management[J]. IEEE Transactions on Smart Grid, 2022, 14 (1): 217- 227. |
25 | 刘向向, 张森林, 朱思乔, 等. 基于灰靶理论和谱聚类的虚拟电厂多形态柔性资源聚合模型[J]. 中国电力, 2023, 56 (11): 104- 112. |
LIU Xiangxiang, ZHANG Senlin, ZHU Siqiao, et al. Multi-form flexible resource aggregation model for virtual power plant based on grey target theory and spectral clustering[J]. Electric Power, 2023, 56 (11): 104- 112. |
[1] | 孙东磊, 孙毅, 刘蕊, 孙鹏凯, 张玉敏. 计及多层级配电网的分布式新能源最大消纳空间分解测算[J]. 中国电力, 2024, 57(8): 108-116. |
[2] | 乔俊峰, 周爱华, 彭林, 王一清, 沈晓峰, 潘森, 杨佩, 黄晨宏. 基于多源数据深度融合的配电网运行评价方法[J]. 中国电力, 2024, 57(6): 193-203. |
[3] | 高月芬, 员成博, 孔凡鹏, 王雪松. 需求响应激励下耦合电转气、碳捕集设备的综合能源系统优化[J]. 中国电力, 2024, 57(4): 32-41. |
[4] | 林昱奂, 郝方舟, 李柏新, 黄波. 配电网运行异常数据识别方法[J]. 中国电力, 2023, 56(9): 134-139. |
[5] | 朱鹏程, 刘曌煜, 孙可, 徐杰, 胡鹏飞, 江道灼. 基于多分块交替方向乘子法的蜂巢状配电网分布式优化调度[J]. 中国电力, 2023, 56(6): 90-100. |
[6] | 张丽, 刘青雷, 张宏伟. 基于改进二进制粒子群算法的家庭负荷优化调度策略[J]. 中国电力, 2023, 56(5): 118-128. |
[7] | 赵军, 张敏, 张世锋, 杨琦. 计及碳交易和新能源不确定性的多微电网合作运行优化策略[J]. 中国电力, 2023, 56(5): 62-71. |
[8] | 张燕, 乔松博, 徐奇锋, 俞静. 基于纳什议价理论的分布式绿色电力交易优化分析[J]. 中国电力, 2022, 55(12): 168-178. |
[9] | 艾欣, 徐立敏, 刘汇川, 王雪莹, 刘宏杨, 李一铮. 面向主动需求响应的需求侧荷源二重性建模方法[J]. 中国电力, 2021, 54(6): 183-190. |
[10] | 张进, 胡存刚, 芮涛. 基于交替方向乘子法的主动配电网日前两阶段分布式优化调度策略[J]. 中国电力, 2021, 54(5): 91-100. |
[11] | 凌婵惠, 郑常宝, 胡存刚, 芮涛. 考虑储能充放电效益的孤岛微电网经济优化模型[J]. 中国电力, 2019, 52(6): 111-120. |
[12] | 吴鸣, 寇凌峰, 张进, 胡存刚. 多运营主体微电网日前经济优化调度纳什议价方法[J]. 中国电力, 2019, 52(11): 19-27,117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||