中国电力 ›› 2024, Vol. 57 ›› Issue (7): 30-39.DOI: 10.11930/j.issn.1004-9649.202305121
许彦平(), 白婕(
), 施浩波(
), 秦晓辉(
), 张彦涛(
)
收稿日期:
2023-05-27
出版日期:
2024-07-28
发布日期:
2024-07-23
作者简介:
许彦平(1989—),女,硕士,高级工程师,从事电力系统规划与新能源生产模拟仿真等研究,E-mail:xuyanping@epri.sgcc.com.cn基金资助:
Yanping XU(), Jie BAI(
), Haobo SHI(
), Xiaohui QIN(
), Yantao ZHANG(
)
Received:
2023-05-27
Online:
2024-07-28
Published:
2024-07-23
Supported by:
摘要:
在电力系统规划与运行的安全稳定计算中,一般选择对安全稳定最不利的运行方式进行校验,但随着新能源渗透率的增加,电网越发复杂多变,人工选择场景主观性较强,针对此问题,提出了一种基于快速凸包算法的极端运行方式提取,从而满足场景选取进行安全校核需求。从电源规划、发输电协调规划两个角度,考虑发电充裕性、火电爬坡需求、网络传输安全3个方面,分析影响规划的极端运行方式;基于凸包算法分别从上述3个方面构建坐标系进行极端运行方式提取;采用中国西北地区电网为算例进行极端运行方式提取,并与基于K-means算法的极端场景提取做对比,结果表明:所提方法能为场景选取提供有效数据支撑,满足电网规划要求。
许彦平, 白婕, 施浩波, 秦晓辉, 张彦涛. 基于凸包算法的极端运行方式提取方法[J]. 中国电力, 2024, 57(7): 30-39.
Yanping XU, Jie BAI, Haobo SHI, Xiaohui QIN, Yantao ZHANG. Extreme Operation Mode Extraction Method Based on Convex Hull Algorithm[J]. Electric Power, 2024, 57(7): 30-39.
极端运行方式小时/h | 时刻 | 负荷/ 万kW | 火电/ 万kW | 新能源/ 万kW | 特点 | |||||
691 | 01-29 19:00 | 1403.2 | 2754.3 | 51.6 | 负荷较小时火电较大 | |||||
855 | 02-05 15:00 | 1485.2 | 1107.4 | 842.1 | 火电出力最小值 | |||||
965 | 02-10 05:00 | 1478.5 | 1659.6 | 24.8 | 新能源出力较小时火电出力较小 | |||||
1072 | 02-14 16:00 | 1510.1 | 1378.4 | 1671.6 | 新能源出力较大时火电出力较小,存在弃风弃光 | |||||
1157 | 02-18 05:00 | 1436.7 | 2291.3 | 1.0 | 新能源出力最小值 | |||||
1646 | 03-10 14:00 | 1562.6 | 1798.3 | 1990.1 | 新能源出力最大值,存在弃风弃光 | |||||
7099 | 10-23 19:00 | 1800.2 | 1496.6 | 1329.1 | 火电出力较小时负荷较大 | |||||
7698 | 11-17 18:00 | 1938.0 | 2030.9 | 1097.9 | 负荷最大值时新能源出力较大 | |||||
7771 | 11-20 19:00 | 1938.0 | 3008.5 | 33.2 | 负荷最大值时火电出力较大,新能源出力较小 | |||||
8251 | 12-10 19:00 | 1609.6 | 3142.7 | 20.8 | 火电出力最大值,新能源出力较小 | |||||
8630 | 12-26 14:00 | 1303.7 | 1817.2 | 1602.2 | 负荷较小时新能源出力较大 | |||||
8655 | 12-27 15:00 | 1254.8 | 1802.7 | 1211.8 | 负荷最小值 | |||||
8718 | 12-30 06:00 | 1288.2 | 2430.1 | 78.8 | 负荷较小时新能源出力较小 |
表 1 考虑供电充裕性的极端运行方式
Table 1 Extreme scenarios considering power supply sufficiency
极端运行方式小时/h | 时刻 | 负荷/ 万kW | 火电/ 万kW | 新能源/ 万kW | 特点 | |||||
691 | 01-29 19:00 | 1403.2 | 2754.3 | 51.6 | 负荷较小时火电较大 | |||||
855 | 02-05 15:00 | 1485.2 | 1107.4 | 842.1 | 火电出力最小值 | |||||
965 | 02-10 05:00 | 1478.5 | 1659.6 | 24.8 | 新能源出力较小时火电出力较小 | |||||
1072 | 02-14 16:00 | 1510.1 | 1378.4 | 1671.6 | 新能源出力较大时火电出力较小,存在弃风弃光 | |||||
1157 | 02-18 05:00 | 1436.7 | 2291.3 | 1.0 | 新能源出力最小值 | |||||
1646 | 03-10 14:00 | 1562.6 | 1798.3 | 1990.1 | 新能源出力最大值,存在弃风弃光 | |||||
7099 | 10-23 19:00 | 1800.2 | 1496.6 | 1329.1 | 火电出力较小时负荷较大 | |||||
7698 | 11-17 18:00 | 1938.0 | 2030.9 | 1097.9 | 负荷最大值时新能源出力较大 | |||||
7771 | 11-20 19:00 | 1938.0 | 3008.5 | 33.2 | 负荷最大值时火电出力较大,新能源出力较小 | |||||
8251 | 12-10 19:00 | 1609.6 | 3142.7 | 20.8 | 火电出力最大值,新能源出力较小 | |||||
8630 | 12-26 14:00 | 1303.7 | 1817.2 | 1602.2 | 负荷较小时新能源出力较大 | |||||
8655 | 12-27 15:00 | 1254.8 | 1802.7 | 1211.8 | 负荷最小值 | |||||
8718 | 12-30 06:00 | 1288.2 | 2430.1 | 78.8 | 负荷较小时新能源出力较小 |
图 5 一年8760 h风光、负荷(含外送)与火电出力变化散点图
Fig.5 Scatter plot of output changes of wind and PV power, load (including inter-provincial transmission), and thermal power for a year (8760 hours)
极端运行方式小时/h | 风光变 化/万kW | 火电变化/万kW | 负荷+外送变化/万kW | 特点 | ||||
762 | –424.9 | 24.0 | –401.2 | 负荷外送下降最大值,火电变化不大,风光下降较大 | ||||
2099 | 564.8 | –0.1 | 547.2 | 负荷外送增长最大值,火电变化不大,风光增长较大 | ||||
3144 | 496.1 | –479.2 | 16.8 | 火电降低最大值,风光增长较大,负荷外送变化不大 | ||||
4345 | 103.1 | –430.7 | –329.6 | 风光变化不大,火电下降较大,负荷外送下降较大 | ||||
7211 | 566.8 | –59.8 | 427.7 | 风光增长最大值,负荷外送增长较大,火电变化不大 | ||||
7530 | –539.5 | 433.6 | –105.9 | 风光下降较大,火电增长较大 | ||||
7722 | –541.8 | 613.2 | 71.4 | 风光降低最大值,火电增长最大值,负荷变化不大 | ||||
8257 | 18.9 | –407.4 | –389.0 | 风光变化不大,火电下降较大,负荷外送下降较大 | ||||
8658 | –519.4 | 328.4 | –191.0 | 风光下降较大,火电增长较大 |
表 2 考虑火电爬坡需求的极端运行方式
Table 2 Extreme scenarios considering thermal climbing demand
极端运行方式小时/h | 风光变 化/万kW | 火电变化/万kW | 负荷+外送变化/万kW | 特点 | ||||
762 | –424.9 | 24.0 | –401.2 | 负荷外送下降最大值,火电变化不大,风光下降较大 | ||||
2099 | 564.8 | –0.1 | 547.2 | 负荷外送增长最大值,火电变化不大,风光增长较大 | ||||
3144 | 496.1 | –479.2 | 16.8 | 火电降低最大值,风光增长较大,负荷外送变化不大 | ||||
4345 | 103.1 | –430.7 | –329.6 | 风光变化不大,火电下降较大,负荷外送下降较大 | ||||
7211 | 566.8 | –59.8 | 427.7 | 风光增长最大值,负荷外送增长较大,火电变化不大 | ||||
7530 | –539.5 | 433.6 | –105.9 | 风光下降较大,火电增长较大 | ||||
7722 | –541.8 | 613.2 | 71.4 | 风光降低最大值,火电增长最大值,负荷变化不大 | ||||
8257 | 18.9 | –407.4 | –389.0 | 风光变化不大,火电下降较大,负荷外送下降较大 | ||||
8658 | –519.4 | 328.4 | –191.0 | 风光下降较大,火电增长较大 |
极端运行 方式小时/h | A省外送/ 万kW | B省外送/ 万kW | C省外送/ 万kW | D省外送/ 万kW | E省外送/ 万kW | |||||
2099 | 1175.8 | –112.6 | 194.9 | –1357.9 | 99.8 | |||||
3750 | –587.4 | 100.8 | –233.8 | 486.8 | 233.6 | |||||
2684 | 381.7 | –729.6 | 204.9 | 143.0 | 0 | |||||
7142 | 80.6 | 1042.7 | 205.5 | –864.1 | –464.7 | |||||
2080 | 1020.9 | 303.0 | –850.6 | –1124.5 | 651.2 | |||||
7021 | 341.8 | –279.5 | 708.8 | –892.3 | 121.2 | |||||
7211 | 649.8 | 316.8 | 592.8 | –1436.6 | –122.8 | |||||
8683 | 100.9 | –626.7 | 0 | 869.8 | –344.0 | |||||
1756 | –38.2 | –385.8 | –302.8 | –220.8 | 947.6 | |||||
8299 | 348.8 | 114.3 | –12.3 | 247.0 | –697.8 |
表 3 考虑网络传输安全的极端运行方式
Table 3 Extreme scenarios considering network transmission security
极端运行 方式小时/h | A省外送/ 万kW | B省外送/ 万kW | C省外送/ 万kW | D省外送/ 万kW | E省外送/ 万kW | |||||
2099 | 1175.8 | –112.6 | 194.9 | –1357.9 | 99.8 | |||||
3750 | –587.4 | 100.8 | –233.8 | 486.8 | 233.6 | |||||
2684 | 381.7 | –729.6 | 204.9 | 143.0 | 0 | |||||
7142 | 80.6 | 1042.7 | 205.5 | –864.1 | –464.7 | |||||
2080 | 1020.9 | 303.0 | –850.6 | –1124.5 | 651.2 | |||||
7021 | 341.8 | –279.5 | 708.8 | –892.3 | 121.2 | |||||
7211 | 649.8 | 316.8 | 592.8 | –1436.6 | –122.8 | |||||
8683 | 100.9 | –626.7 | 0 | 869.8 | –344.0 | |||||
1756 | –38.2 | –385.8 | –302.8 | –220.8 | 947.6 | |||||
8299 | 348.8 | 114.3 | –12.3 | 247.0 | –697.8 |
1 | 曹志斌. 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL](2020-09-22)[2023-03-20]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm. |
2 | 刘纯. 新能源电力系统生产模拟[M]. 北京: 中国电力出版社, 2019. |
3 | 代倩, 张健, 吴俊玲, 等. 基于多分区时序生产模拟的省级电网差异化储能规划方法[J]. 中国电力, 2022, 55 (11): 21- 28. |
DAI Qian, ZHANG Jian, WU Junling, et al. Differentiated energy storage planning method of provincial power grids based on multi-partition time series production simulation[J]. Electric Power, 2022, 55 (11): 21- 28. | |
4 | 陶星宇, 杨健维, 牛牧童, 等. 计及电动汽车充电负荷的电力系统中长期生产模拟方法研究[J]. 电力科学与技术学报, 2023, 38 (1): 18- 26. |
TAO Xingyu, YANG Jianwei, NIU Mutong, et al. A mid/long-term power system production simulation approach considering charging load of electric vehicles[J]. Journal of Electric Power Science and Technology, 2023, 38 (1): 18- 26. | |
5 | 国家市场监督管理总局, 国家标准化管理委员会. 电力系统安全稳定导则: GB 38755—2019[S]. 北京: 中国标准出版社, 2019. |
6 | 程浩忠. 电力系统规划[M]. 2版. 北京: 中国电力出版社, 2014. |
7 |
HOU Q C, DU E S, ZHANG N, et al. Impact of high renewable penetration on the power system operation mode: a data-driven approach[J]. IEEE Transactions on Power Systems, 2020, 35 (1): 731- 741.
DOI |
8 | 侯庆春, 杜尔顺, 田旭, 等. 数据驱动的电力系统运行方式分析[J]. 中国电机工程学报, 2021, 41 (1): 1- 12, 393. |
HOU Qingchun, DU Ershun, TIAN Xu, et al. Data-driven power system operation mode analysis[J]. Proceedings of the CSEE, 2021, 41 (1): 1- 12, 393. | |
9 | 丁明, 解蛟龙, 刘新宇, 等. 面向风电接纳能力评价的风资源/负荷典型场景集生成方法与应用[J]. 中国电机工程学报, 2016, 36 (15): 4064- 4072. |
DING Ming, XIE Jiaolong, LIU Xinyu, et al. The generation method and application of wind resources/load typical scenario set for evaluation of wind power grid integration[J]. Proceedings of the CSEE, 2016, 36 (15): 4064- 4072. | |
10 | 段云琦. 基于数据挖掘的电网规划多场景建模研究[D]. 北京: 华北电力大学, 2018. |
DUAN Yunqi. Research on multi-scenario modeling of power grid planning based on data mining[D]. Beijing: North China Electric Power University, 2018. | |
11 |
罗魁, 石文辉. 面向风电接入暂态功角稳定分析的电网极端运行场景提取[J]. 电力系统自动化, 2021, 45 (20): 113- 120.
DOI |
LUO Kui, SHI Wenhui. Extraction of extreme operation scenarios in power grid for transient angle stability analysis under wind power integration[J]. Automation of Electric Power Systems, 2021, 45 (20): 113- 120.
DOI |
|
12 | LEE S T. Community activity room/sup/spl trade// as a new tool for transmission operation and planning under a competitive power market[C]//2003 IEEE Bologna Power Tech Conference Proceedings. Bologna, Italy. IEEE, 2003: 6pp. Vol. 4. |
13 |
余贻鑫. 电力系统安全域方法研究述评[J]. 天津大学学报, 2008, 41 (6): 635- 646.
DOI |
YU Yixin. Review of study on methodology of security regions of power system[J]. Journal of Tianjin University, 2008, 41 (6): 635- 646.
DOI |
|
14 | 刘佳霖, 严剑峰, 史东宇, 等. 基于Lawson算法的电力系统运行方式规则自动生成方法[J]. 中国电机工程学报, 2023, 43 (21): 8171- 8182. |
LIU Jialin, YAN Jianfeng, SHI Dongyu, et al. Automatically generating method of power system operation mode rules based on lawson algorithm[J]. Proceedings of the CSEE, 2023, 43 (21): 8171- 8182. | |
15 | 王鹏, 张灵凌, 梁琳, 等. 火电机组有偿调峰与无偿调峰划分方法探讨[J]. 电力系统自动化, 2010, 34 (9): 87- 90. |
WANG Peng, ZHANG Lingling, LIANG Lin, et al. A method for division of paid peak-regulation and free peak-regulation for thermal power units[J]. Automation of Electric Power Systems, 2010, 34 (9): 87- 90. | |
16 | 曾林. 风电出力不确定性建模及其在电力系统中的应用[D]. 天津: 天津大学, 2018. |
ZENG Lin. Modeling of wind power uncertainty and its application in power system[D]. Tianjin : Tianjin University, 2018. | |
17 |
GRAHAM R L. An efficient algorithm for determining the convex hull of a finite planar set[J]. Information Processing Letters, 1972, 1 (4): 132- 133.
DOI |
18 |
JARVIS R A. On the identification of the convex hull of a finite set of points in the plane[J]. Information Processing Letters, 1973, 2 (1): 18- 21.
DOI |
19 |
PREPARATA F P, HONG S J. Convex hulls of finite sets of points in two and three dimensions[J]. Communications of the ACM, 1977, 20 (2): 87- 93.
DOI |
20 | CHAND D R, KAPUR S S. An algorithm for convex polytopes[J]. Journal of the ACM, 17(1): 78–86. |
21 | CLARKSON K L, SHOR P W. Applications of random sampling in computational geometry, II[J]. Discrete & Computational Geometry, 1989, 4 (5): 387- 421. |
22 |
BARBER C B, DOBKIN D P, HUHDANPAA H. The quickhull algorithm for convex hulls[J]. ACM Transactions on Mathematical Software, 1996, 22 (4): 469- 483.
DOI |
23 | 毛鹏. 快速凸包计算实现及其应用[D]. 西安: 西安电子科技大学, 2013. |
MAO Peng. Fast convexhull computation inplementation and its application[D]. Xi'an: Xidian University, 2013. |
[1] | 傅观君, 张富强, 夏鹏, 冯君淑, 张晋芳. 天然气发电在新型电力系统中的功能定位及发展前景研判[J]. 中国电力, 2024, 57(8): 67-74. |
[2] | 李文佩,方华亮,马溪源,刘凯. 短时需求响应对含风电电源规划的影响研究[J]. 中国电力, 2015, 48(2): 122-127. |
[3] | 白建华,闫晓卿,程路. “十三五”电力流及电源规划方案研究[J]. 中国电力, 2015, 48(1): 15-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||