[1] 赵永良, 付鑫, 吴尚远, 等. 基于计算机视觉的智能仓储图像识别系统设计与实现[J]. 电力信息与通信技术, 2019, 17(12): 31-36 ZHAO Yongliang, FU Xin, WU Shangyuan, et al. Design and implementation of intelligent warehouse image recognition system based on computer vision[J]. Electric Power Information and Communication Technology, 2019, 17(12): 31-36 [2] YUAN Lufeng, WANG Guannan, FAN Shifeng, et al. Intelligent work order recognition system based on end-to-end deep neural network[C]//2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC). Xiamen, China. IEEE, 2019: 387-391. [3] 庞丝丝, 黄呈铖. 基于卷积神经网络的图像分类研究[J]. 现代计算机, 2019(23): 40-44 PANG Sisi, HUANG Chengcheng. Image classification based on convolution neural network[J]. Modern Computer, 2019(23): 40-44 [4] 王超. 基于卷积神经网络的图像分类技术研究与实现[J]. 电脑知识与技术, 2016, 12(35): 209-211 WANG Chao. Research and implementation of image classification based on convolution neural network[J]. Computer Knowledge and Technology, 2016, 12(35): 209-211 [5] 李华, 屈丹, 张文林, 等. 结合全局词向量特征的循环神经网络语言模型[J]. 信号处理, 2016, 32(6): 715-723 LI Hua, QU Dan, ZHANG Wenlin, et al. Recurrent neural network language model with global word vector features[J]. Journal of Signal Processing, 2016, 32(6): 715-723 [6] 陈翠平. 基于深度信念网络的文本分类算法[J]. 计算机系统应用, 2015, 24(2): 121-126 CHEN Cuiping. Text categorization based on deep belief network[J]. Computer Systems & Applications, 2015, 24(2): 121-126 [7] FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA. IEEE, 2008: 1-8. [8] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D. Cascade object detection with deformable part models[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010. San Francisco, CA, USA. IEEE, 2010: 2241-2248. [9] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. [10] BENENSON R, MATHIAS M, TIMOFTE R, et al. Pedestrian detection at 100 frames per second[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA. IEEE, 2012: 2903-2910. [11] 邢艳芳, 段红秀, 何光威. TensorFlow在图像识别系统中的应用[J]. 计算机技术与发展, 2019, 29(5): 192-196 XING Yanfang, DUAN Hongxiu, HE Guangwei. Application of TensorFlow in image recognition system[J]. Computer Technology and Development, 2019, 29(5): 192-196 [12] 杨楠. 基于Caffe深度学习框架的卷积神经网络研究[D]. 石家庄: 河北师范大学, 2016. YANG Nan. The study of convolution neural network based on Caffe deep learning framework[D]. Shijiazhuang: Hebei Normal University, 2016. [13] 李梦洁, 董峦. 基于PyTorch的机器翻译算法的实现[J]. 计算机技术与发展, 2018, 28(10): 160-163, 167 LI Mengjie, DONG Luan. Implementation of machine translation algorithm based on PyTorch[J]. Computer Technology and Development, 2018, 28(10): 160-163, 167 [14] SABZMEYDANI P, MORI G. Detecting pedestrians by learning shapelet features[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. June 17-22, 2007. Minneapolis, MN, USA. IEEE, 2007: 1-8. [15] 王江涛, 杨静宇. 红外图像中人体实时检测研究[J]. 系统仿真学报, 2007(19): 4490-4494 WANG Jiangtao, YANG Jingyu. Research on real time pedestrian detection in infrared images[J]. Journal of System Simulation, 2007(19): 4490-4494 [16] 刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 电网技术, 2019, 13(2): 27-33 LIU Yunpeng, PEI Shaotong, WU Jianhua, et al. Deep learning based target detection method for abnormal hot spots infrared images of transmission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27-33 [17] REN X F, BO L F, FOX D. RGB-(D) scene labeling: features and algorithms[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA. IEEE, 2012: 2759-2766. [18] BENENSON R, MATHIAS M, TUYTELAARS T, et al. Seeking the strongest rigid detector[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR, USA. IEEE, 2013: 3666-3673. [19] 高嵩, 陆倚鹏, 王笑倩, 等. 基于深度学习的悬式瓷绝缘子红外图像识别方法[J]. 电力科学与技术学报, 2020, 35(5): 119-125 GAO Song, LU Yipeng, WANG Xiaoqian, et al. Infrared image recognition method of porcelain disc-suspended insulators based on deep learning technology[J]. Journal of Electric Power Science and Technology, 2020, 35(5): 119-125 [20] 王功鹏, 段萌, 牛常勇. 基于卷积神经网络的随机梯度下降算法[J]. 计算机工程与设计, 2018, 39(2): 441-445, 462 WANG Gongpeng, DUAN Meng, NIU Changyong. Stochastic gradient descent algorithm based on convolution neural network[J]. Computer Engineering and Design, 2018, 39(2): 441-445, 462 [21] 杨鹤标, 龚文彦. 基于卷积神经网络的反向传播算法改进[J]. 计算机工程与设计, 2019, 40(1): 126-130 YANG Hebiao, GONG Wenyan. Improvement of back propagation algorithm based on convolution neural network[J]. Computer Engineering and Design, 2019, 40(1): 126-130 [22] 杨晓楠, 孙博, 郎燕生. 基于深度学习的特高压直流闭锁故障智能调度决策[J]. 中国电力, 2020, 53(6): 8-17 YANG Xiaonan, SUN Bo, LANG Yansheng. Intelligent dispatch decision-making for UHVDC blocking fault based on deep learning[J]. Electric Power, 2020, 53(6): 8-17
|