中国电力 ›› 2024, Vol. 57 ›› Issue (11): 191-198.DOI: 10.11930/j.issn.1004-9649.202307015
• 信息与通信 • 上一篇
收稿日期:
2023-07-06
出版日期:
2024-11-28
发布日期:
2024-11-27
作者简介:
吴赞红(1973—),男,通信作者,高级工程师,从事电力通信运行维护管理,E-mail:13602768748@139.com
基金资助:
Received:
2023-07-06
Online:
2024-11-28
Published:
2024-11-27
Supported by:
摘要:
电网场景中设备繁多,电磁环境复杂,对传感器节点无线数据回传造成了时变宽带强干扰。针对此问题,提出了面向强干扰电力物联网的低功耗回传方法。通过同步调度、分布式实时窄带干扰监测、最优信道数据上传等步骤,大大降低了强干扰环境下的数据碰撞概率,提高了通信容量,同时保证了系统整体的低功耗特性。仿真结果表明:该方法的吞吐量相对于传统方法提升2倍以上,功耗下降50%以上。整体而言,该方法极大提升了通信容量,降低了系统功耗。
吴赞红. 面向强干扰电力物联网的低功耗数据回传方法[J]. 中国电力, 2024, 57(11): 191-198.
Zanhong WU. Low-Power Data Return Method for Strong Interference Power IoT[J]. Electric Power, 2024, 57(11): 191-198.
节点 数量 | 数据信道 总计带宽/ MHz | 窄带数 据带宽/ kHz | 控制信 道带宽/ kHz | 节点最大 发射功率/ dBm | 强弱干扰 功率门限/ dBm | 控制信道 时隙长度/ μs | ||||||
128 | 100 | 20 | 10 | 10 |
表 1 仿真参数
Table 1 Simulation parameters
节点 数量 | 数据信道 总计带宽/ MHz | 窄带数 据带宽/ kHz | 控制信 道带宽/ kHz | 节点最大 发射功率/ dBm | 强弱干扰 功率门限/ dBm | 控制信道 时隙长度/ μs | ||||||
128 | 100 | 20 | 10 | 10 |
1 | 何立民. 从智能电网、物联网到泛在电力物联网[J]. 单片机与嵌入式系统应用, 2022, 22 (4): 3- 5, 10. |
HE Limin. From smart grid and Internet of Things to ubiquitous power Internet of Things[J]. Microcontrollers & Embedded Systems, 2022, 22 (4): 3- 5, 10. | |
2 | 田飞燕, 陈晓明, 钟财军, 等. 6G蜂窝物联网的大规模接入技术[J]. 物联网学报, 2020, 4 (1): 92- 103. |
TIAN Feiyan, CHEN Xiaoming, ZHONG Caijun, et al. Massive access technology in 6G cellular Internet of Things network[J]. Chinese Journal on Internet of Things, 2020, 4 (1): 92- 103. | |
3 | 王旭. 物联网技术及在智慧城市建设中的应用[J]. 通讯世界, 2019, 26 (3): 242- 243. |
4 | 丁晔. 物联网在智慧农业中的应用性研究[J]. 新农业, 2021, (22): 45. |
5 | 曾鸣, 王雨晴, 李明珠, 等. 泛在电力物联网体系架构及实施方案初探[J]. 智慧电力, 2019, 47 (4): 1- 7, 58. |
ZENG Ming, WANG Yuqing, LI Mingzhu, et al. Preliminary study on the architecture and implementation plan of widespread power Internet of Things[J]. Smart Power, 2019, 47 (4): 1- 7, 58. | |
6 | 王晓彩. 基于载波侦听的NB-IoT-D2D通信资源分配研究[D]. 郑州: 郑州大学, 2020. |
WANG Xiaocai. Research on NB-IoT-D2D communication resource allocation based on carrier sense[D]. Zhengzhou: Zhengzhou University, 2020. | |
7 |
杜书, 马玫, 赵波, 等. 用于电力物联网随机接入的低碰撞跳频通信系统[J]. 电信科学, 2023, 39 (1): 117- 125.
DOI |
DU Shu, MA Mei, ZHAO Bo, et al. Low-hit frequency-hopping communication systems for power Internet of Things random access[J]. Telecommunications Science, 2023, 39 (1): 117- 125.
DOI |
|
8 | 万尚军, 费章君, 杨仕友, 等. 配电房物联网关方案研究[J]. 物联网技术, 2023, 13 (1): 60- 62, 66. |
9 | 陈小利, 黄戌霞, 林静. LoRa和NB-IoT通信技术在环境监测中的应用[J]. 电子技术, 2023, 52 (1): 16- 18. |
CHEN Xiaoli, HUANG Xuxia, LIN Jing. Application of LoRa and NB-IoT communication technology in environmental monitoring[J]. Electronic Technology, 2023, 52 (1): 16- 18. | |
10 | 陈德富, 刘小湖, 周旭文, 等. 基于LoRa自组网的电能采集系统设计与实现[J]. 计算机测量与控制, 2023, 31 (3): 235- 240, 261. |
CHEN Defu, LIU Xiaohu, ZHOU Xuwen, et al. Design and implementation of power collection system based on LoRa ad hoc network[J]. Computer Measurement & Control, 2023, 31 (3): 235- 240, 261. | |
11 | 王星然, 陈济颖. 工业自动化控制系统中抗干扰技术的有效运用研究[J]. 自动化应用, 2018, (10): 137- 138. |
12 | 王桂琴. 工业机器人电缆的抗电磁干扰优化设计[J]. 电子技术与软件工程, 2019, (21): 78- 79. |
13 |
李沙沙, 褚学林. 工业自动化项目中电磁兼容问题及处理方法[J]. 南方农机, 2020, 51 (11): 194- 195.
DOI |
14 | WU Anwu, DENG Xinli. Design strategy of electromagnetic compatibility for industrial field hardware circuit system[J]. Machine Tool & Hydraulics, 2016, 44 (24): 57- 62. |
15 | TLAKE L C, MARKUS E D, ABU-MAHFOUZ A M. A review of interference challenges on integrated 5GNR and NB-IoT networks[C]//2021 IEEE AFRICON. Arusha, Tanzania, United Republic of. IEEE, 2021: 1–6. |
16 | PROMSUK N, TAPARUGSSANAGORN A, VARTIAINEN J. Interference suppression methods with adaptive threshold in Internet of Things (IoT) systems[C]//2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE). Phuket, Thailand. IEEE, 2017: 1–6. |
17 | DIONÍSIO R, LOLIĆ T, TORRES P. Electromagnetic interference analysis of industrial IoT networks: from legacy systems to 5G[C]//2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW). Riga, Latvia. IEEE, 2020: 41–46. |
18 | GUNATILAKA D, SHA M, LU C Y. Impacts of channel selection on industrial wireless sensor-actuator networks[C]//IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. Atlanta, GA, USA. IEEE, 2017: 1–9. |
19 | FARRAJ A. Cooperative transmission strategy for industrial IoT against interference attacks[C]//2023 IEEE Texas Power and Energy Conference (TPEC). College Station, TX, USA. IEEE, 2023: 1–6. |
20 | GONZÁLEZ G J, GREGORIO F H, COUSSEAU J. Successive interference cancellation for the NB-IoT uplink multiple access[C]//2020 Argentine Conference on Electronics (CAE). Buenos Aires, Argentina. IEEE, 2020: 41–46. |
21 |
ZHANG X K, ZHANG B N, GUO D X. Performance of poly-polarization multiplexing in narrow-band wireless communication aided by pre-compensation and multi-notch OPPFs[J]. IEEE Wireless Communications Letters, 2017, 6 (4): 478- 481.
DOI |
22 | WU Q L, ZHANG C. Ultra narrow band transmission system with orbital angular momentum[C]//2021 IEEE International Conference on Communications Workshops (ICC Workshops). Montreal, QC, Canada. IEEE, 2021: 1–5. |
23 | ZHENG M Y, HUANG T T, WANG L, et al. Performance analysis of M-ary DCSK system over narrow band power-line communications[C]//2017 23rd Asia-Pacific Conference on Communications (APCC). Perth, WA, Australia. IEEE, 2017: 1–6. |
24 | LI B Z, HOU F, ZHANG C Y, et al. MAC-AC: a novel distributed MAC protocol for accessing channel in vehicular ad hoc networks[C]//2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Victoria, BC, Canada. IEEE, 2020: 1–5. |
25 | WANG Z Y, XU G S, ZHANG M, et al. Collision avoidance models and algorithms in the era of Internet of vehicles[C]//2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI). Chongqing City, China. IEEE, 2020: 123–126. |
[1] | 翟峰, 冯云, 程凯, 蔡绍堂, 于丽莹, 杨挺. 基于信息熵的多源电力物联终端设备信任度评价方法[J]. 中国电力, 2022, 55(5): 158-165. |
[2] | 赵保华, 王志皓, 陈连栋, 任春卉, 余发江, 徐庆. 电力物联网可信树形批量认证机制[J]. 中国电力, 2022, 55(5): 149-157. |
[3] | 赵丙镇, 王栋, 钱雪, 李军. 基于区块链的电力物联网信任网关设计与实现[J]. 中国电力, 2021, 54(7): 192-197. |
[4] | 佘蕊, 张宁池, 王艳茹, 郭丹丹, 马文洁, 刘卉, 张洁. 面向电力物联网的5G通信认知无线电NOMA系统研究[J]. 中国电力, 2021, 54(5): 35-45. |
[5] | 刘世栋, 卜宪德, 刘川, 田峰. 基于计算卸载的电力物联网能效优化研究[J]. 中国电力, 2021, 54(5): 28-34,45. |
[6] | 熊轲, 张锐晨, 王蕊, 钟桂东, 张煜. 5G助力电力物联网:网络架构与关键技术[J]. 中国电力, 2021, 54(3): 99-108. |
[7] | 刘铭, 刘念, 韩晓艺, 彭林宁, 付华, 陈一悰. 一种基于射频指纹的电力物联网设备身份识别方法[J]. 中国电力, 2021, 54(3): 80-88. |
[8] | 林洁瑜, 崔维平. 基于双链区块链的电力数据资产交易系统架构[J]. 中国电力, 2021, 54(11): 164-170,180. |
[9] | 李苏秀, 刘林, 王雪, 代红才, 赵留军. 泛在电力物联网商业模式理论体系与设计架构[J]. 中国电力, 2019, 52(9): 1-9. |
[10] | 王哲, 赵宏大, 朱铭霞, 周霞, 解相朋, 谢宏福, 臧必鹏. 电力无线专网在泛在电力物联网中的应用[J]. 中国电力, 2019, 52(12): 27-38. |
[11] | 陈家璘, 贺易, 李磊, 周正, 孙俊, 张洁. 泛在电力物联网传输网优化关键技术研究[J]. 中国电力, 2019, 52(12): 20-26,38. |
[12] | 王申华, 何湘威, 方小方, 陈冰松, 郭创新. 基于泛在电力物联网多源信息的电网动态风险评估系统[J]. 中国电力, 2019, 52(12): 10-19. |
[13] | 翟少磊,李博,张林山,唐标. 电力物联网信息化控制中一种高效的认知通信方法[J]. 中国电力, 2016, 49(8): 130-134. |
[14] | 韩本帅,孙中尉,崔海鹏,林泽源,张涛. 智能变电站过程层时间同步方式研究[J]. 中国电力, 2012, 45(11): 86-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||