[1] LIN W, ZIOLKOWSKI R W, HUANG J Q. Electrically small, low-profile, highly efficient, Huygens dipole rectennas for wirelessly powering Internet-of-things devices[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(6): 3670-3679. [2] SONG F, ZHU M Q, ZHOU Y T, et al. Smart collaborative tracking for ubiquitous power IoT in edge-cloud interplay domain[J]. IEEE Internet of Things Journal, 2020, 7(7): 6046-6055. [3] 张宁, 杨经纬, 王毅, 等. 面向泛在电力物联网的5G通信: 技术原理与典型应用[J]. 中国电机工程学报, 2019, 39(14): 4015-4025 ZHANG Ning, YANG Jingwei, WANG Yi, et al. 5G communication for the ubiquitous Internet of Things in electricity: technical principles and typical applications[J]. Proceedings of the CSEE, 2019, 39(14): 4015-4025 [4] KAKKAVAS G, TSITSEKLIS K, KARYOTIS V, et al. A software defined radio cross-layer resource allocation approach for cognitive radio networks: from theory to practice[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(2): 740-755. [5] LIN T H, YANG G C, KWONG W C. A homogeneous multi-radio rendezvous algorithm for cognitive radio networks[J]. IEEE Communications Letters, 2019, 23(4): 736-739. [6] 徐思雅, 张国翊, 郭少勇, 等. 一种认知无线电的智能电网通信业务数据分组调度机制[J]. 北京邮电大学学报, 2015, 38(增刊1): 15-19 XU Siya, ZHANG Guoyi, GUO Shaoyong, et al. A packet scheduling mechanism on cognitive radio networks for smart grid[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(S1): 15-19 [7] 翟少磊, 李博, 张林山, 等. 电力物联网信息化控制中一种高效的认知通信方法[J]. 中国电力, 2016, 49(8): 130-134 ZHAI Shaolei, LI Bo, ZHANG Linshan, et al. An efficient cognitive radio communication algorithm for electric power IOT information control[J]. Electric Power, 2016, 49(8): 130-134 [8] 王毅, 陈启鑫, 张宁, 等. 5G通信与泛在电力物联网的融合: 应用分析与研究展望[J]. 电网技术, 2019, 43(5): 1575-1585 WANG Yi, CHEN Qixin, ZHANG Ning, et al. Fusion of the 5G communication and the ubiquitous electric Internet of Things: application analysis and research prospects[J]. Power System Technology, 2019, 43(5): 1575-1585 [9] 王宏延, 顾舒娴, 完颜绍澎, 等. 5G技术在电力系统中的研究与应用[J]. 广东电力, 2019, 32(11): 78-85 WANG Hongyan, GU Shuxian, WANYAN Shaopeng, et al. Research and application of 5G technology in power systems[J]. Guangdong Electric Power, 2019, 32(11): 78-85 [10] 宣以所. 5G移动通信发展趋势与若干关键技术应用研究[J]. 信息与电脑(理论版), 2017, 377(07): 172-174 XUAN Yisuo. Research on the Development Trend of 5G Mobile Communication and Several Key Technologies[J]. China Computer & Communication, 2017, 377(07): 172-174 [11] 毕奇, 梁林, 杨姗, 等. 面向5G的非正交多址接入技术[J]. 电信科学, 2015, 31(5): 20-27 BI Qi, LIANG Lin, YANG Shan, et al. Non-orthogonal multiple access technology for 5G systems[J]. Telecommunications Science, 2015, 31(5): 20-27 [12] 刘志航, 田宇昊, 袁伟娜. 5G非正交多址技术关键问题研究[J]. 自动化仪表, 2019, 40(8): 83-88 LIU Zhihang, TIAN Yuhao, YUAN Weina. Research on key issues of 5G non-orthogonal multiple access technology[J]. Process Automation Instrumentation, 2019, 40(8): 83-88 [13] ANDREWS J G, BUZZI S, WAN C, et al. What Will 5G Be?[J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065-1082. [14] DING Z, LEI X, KARAG G K, et al. A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2181-2195. [15] WANG B, DAI L, WANG Z, et al. Spectrum and Energy Efficient Beamspace MIMONOMA for Millimeter-Wave Communications Using Lens Antenna Array[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(10): 2370-2382. [16] SALEHI M, TABASSUM H, HOSSAIN E. Meta Distribution of SIR in Large-Scale Uplink and Downlink NOMA Networks[J]. IEEE Transactions on Communications, 2018, 67(4): 3009-3025. [17] ZHANG Z, SUN H, HU R Q. Downlink and Uplink Non-Orthogonal Multiple Access in a Dense Wireless Network[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2771-2784. [18] LIU Y W, DING Z G, ELKASHLAN M, et al. Nonorthogonal multiple access in large-scale underlay cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 10152-10157. [19] LV L, NI Q, DING Z G, et al. Application of non-orthogonal multiple access in cooperative spectrum-sharing networks over nakagami- $m$ fading channels[J]. IEEE Transactions on Vehicular Technology, 2017, 66(6): 5506-5511. [20] LV L, CHEN J, NI Q, et al. Design of cooperative non-orthogonal multicast cognitive multiple access for 5G systems: user scheduling and performance analysis[J]. IEEE Transactions on Communications, 2017, 65(6): 2641-2656. [21] KADER F, SHIN S Y. Cooperative spectrum sharing with space time block coding and non-orthogonal multiple access[C]//2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN). Vienna, Austria. IEEE, 2016: 490-494. [22] 杨纲, 寇健, 严思唯, 等. 基于改进kmeans++算法的用户分类与电价政策影响分析[J]. 电力需求侧管理, 2020, 22(3): 57-62 YANG Gang, KOU Jian, YAN Siwei, et al. Classification of users and analysis of influence of electricity price policy based on improved kmeans++ algorithm[J]. Power Demand Side Management, 2020, 22(3): 57-62 [23] 罗鸿轩, 肖勇, 杨劲锋, 等. 基于边缘计算与MapReduce的智能量测终端数据处理方法[J]. 智慧电力, 2020, 48(3): 22-29 LUO Hongxuan, XIAO Yong, YANG Jinfeng, et al. Data processing method for smart metering terminal based on edge computing and map reduce[J]. Smart Power, 2020, 48(3): 22-29 [24] LU P, LV H, LIU N, et al. Optimal flexibility dispatch of demand side resources with high penetration of renewables: a Stackelberg game method[J]. Global Energy Interconnection, 2021, 4(1): 28-38. [25] LU X J, WANG J, LIU G, et al. Station-and-network-coordinated planning of integrated energy system considering integrated demand response[J]. Global Energy Interconnection, 2021, 4(1): 39-47. |