中国电力 ›› 2024, Vol. 57 ›› Issue (11): 139-150.DOI: 10.11930/j.issn.1004-9649.202307031
李铁成1(
), 范辉1, 张卫明1, 王献志1, 张艺宏2, 戴志辉2
收稿日期:2023-07-10
录用日期:2023-10-08
发布日期:2024-11-23
出版日期:2024-11-28
作者简介:李铁成(1980—),男,硕士,高级工程师(教授级),从事电力系统自动化及相关技术研究,E-mail:1877014263@qq.com
基金资助:
Tiecheng LI1(
), Hui FAN1, Weiming ZHANG1, Xianzhi WANG1, Yihong ZHANG2, Zhihui DAI2
Received:2023-07-10
Accepted:2023-10-08
Online:2024-11-23
Published:2024-11-28
Supported by:摘要:
传统纵联差动保护在新能源场站接入后会出现可靠性降低甚至拒动的问题。为此,首先提出了秩差累加积波形相似度算法并分析了其抗干扰特性,该算法通过计算两组数据的最大不匹配程度来度量两波形的相似度,显著减弱了异常数据对波形相似度判断的影响。在此基础上,利用送出线路两侧暂态电流时域波形特征的差异,提出了基于5G通信技术纵联保护新原理并构建了完整的保护方案。最后,通过PSCAD/EMTDC验证了所提保护方案的性能。仿真结果表明,所提方案不受新能源类型的限制,适用于各类新能源场站,具有良好的抗延时防误动、抗噪声及异常数据的能力;在新能源弱出力及断路器重合于永久性故障情况下也具备良好的动作性能。
李铁成, 范辉, 张卫明, 王献志, 张艺宏, 戴志辉. 基于5G通信的有源配电网新能源送出线路纵联保护[J]. 中国电力, 2024, 57(11): 139-150.
Tiecheng LI, Hui FAN, Weiming ZHANG, Xianzhi WANG, Yihong ZHANG, Zhihui DAI. Pilot Protection of New Energy Transmission Line in Active Distribution Network Based on 5G Communication[J]. Electric Power, 2024, 57(11): 139-150.
| 场景 | 异常数据1 | 异常数据2 | AR | 场景 | 异常数据1 | 异常数据2 | AR | |||||||
| 1 | –1.0 | –0.3 | 54 | 9 | 0.30 | –0.30 | 56 | |||||||
| 2 | –0.4 | –0.3 | 54 | 10 | 0.40 | –0.30 | 58 | |||||||
| 3 | –0.3 | –0.3 | 54 | 11 | 0.50 | –0.30 | 58 | |||||||
| 4 | –0.2 | –0.3 | 54 | 12 | 1.00 | –0.30 | 58 | |||||||
| 5 | –0.1 | –0.3 | 54 | 13 | 0.01 | 0.20 | 8 | |||||||
| 6 | 0 | –0.3 | 42 | 14 | 0.20 | 0.01 | 30 | |||||||
| 7 | 0.1 | –0.3 | 42 | 15 | 0.20 | –0.20 | 44 | |||||||
| 8 | 0.2 | –0.3 | 44 | 16 | 0.20 | –1.00 | 44 |
表 1 异常数据不同值时AR的变化
Table 1 Changes in AR with different values of abnormal data
| 场景 | 异常数据1 | 异常数据2 | AR | 场景 | 异常数据1 | 异常数据2 | AR | |||||||
| 1 | –1.0 | –0.3 | 54 | 9 | 0.30 | –0.30 | 56 | |||||||
| 2 | –0.4 | –0.3 | 54 | 10 | 0.40 | –0.30 | 58 | |||||||
| 3 | –0.3 | –0.3 | 54 | 11 | 0.50 | –0.30 | 58 | |||||||
| 4 | –0.2 | –0.3 | 54 | 12 | 1.00 | –0.30 | 58 | |||||||
| 5 | –0.1 | –0.3 | 54 | 13 | 0.01 | 0.20 | 8 | |||||||
| 6 | 0 | –0.3 | 42 | 14 | 0.20 | 0.01 | 30 | |||||||
| 7 | 0.1 | –0.3 | 42 | 15 | 0.20 | –0.20 | 44 | |||||||
| 8 | 0.2 | –0.3 | 44 | 16 | 0.20 | –1.00 | 44 |
| 类型 | 参数 | 数值 | ||
| 光伏电站 | 额定容量/MW | 8 | ||
| 逆变器直流母线电压/kV | 1 | |||
| 逆变器直流侧电容/μF | ||||
| 光伏额定输出电压/kV | 0.6 | |||
| 网侧线电压/kV | 10.5 | |||
| 电网频率/Hz | 50 | |||
| 额定容量MW | 20 | |||
| 风电场 | 切入风速/(m·s–1) | 3 | ||
| 切出风速/(m·s–1) | 25 | |||
| 额定风速/(m·s–1) | 11 | |||
| 风机叶片半径/m | 46 | |||
| 空气密度/(kg·m–3) | 1.225 |
表 2 新能源电站仿真参数
Table 2 Simulation parameters of new energy station
| 类型 | 参数 | 数值 | ||
| 光伏电站 | 额定容量/MW | 8 | ||
| 逆变器直流母线电压/kV | 1 | |||
| 逆变器直流侧电容/μF | ||||
| 光伏额定输出电压/kV | 0.6 | |||
| 网侧线电压/kV | 10.5 | |||
| 电网频率/Hz | 50 | |||
| 额定容量MW | 20 | |||
| 风电场 | 切入风速/(m·s–1) | 3 | ||
| 切出风速/(m·s–1) | 25 | |||
| 额定风速/(m·s–1) | 11 | |||
| 风机叶片半径/m | 46 | |||
| 空气密度/(kg·m–3) | 1.225 |
| 故障位置 | 故障类型 | AR | ||||||
| A相 | B相 | C相 | ||||||
| 区内f2 | AG | 450 | 0 | 0 | ||||
| AB | 450 | 450 | 0 | |||||
| ABG | 450 | 450 | 0 | |||||
| ABC | 450 | 450 | 450 | |||||
| 区内f3 | AG | 450 | 0 | 0 | ||||
| AB | 450 | 450 | 0 | |||||
| ABG | 450 | 450 | 0 | |||||
| ABC | 450 | 450 | 450 | |||||
表 3 区内各故障类型AR值
Table 3 AR value of each fault type in fault zone
| 故障位置 | 故障类型 | AR | ||||||
| A相 | B相 | C相 | ||||||
| 区内f2 | AG | 450 | 0 | 0 | ||||
| AB | 450 | 450 | 0 | |||||
| ABG | 450 | 450 | 0 | |||||
| ABC | 450 | 450 | 450 | |||||
| 区内f3 | AG | 450 | 0 | 0 | ||||
| AB | 450 | 450 | 0 | |||||
| ABG | 450 | 450 | 0 | |||||
| ABC | 450 | 450 | 450 | |||||
| 功率输出/MW | 故障类型 | AR | ||||||
| A相 | B相 | C相 | ||||||
| 0 | AG | 225 | 0 | 0 | ||||
| AB | 225 | 225 | 0 | |||||
| ABG | 225 | 225 | 0 | |||||
| ABC | 225 | 225 | 225 | |||||
| 10 | AG | 450 | 0 | 0 | ||||
| AB | 450 | 450 | 0 | |||||
| ABG | 450 | 450 | 0 | |||||
| ABC | 450 | 450 | 450 | |||||
| 20 | AG | 450 | 0 | 0 | ||||
| AB | 450 | 450 | 0 | |||||
| ABG | 450 | 450 | 0 | |||||
| ABC | 450 | 450 | 450 | |||||
表 4 新能源场站不同功率输出下的保护性能
Table 4 Protection performance of new energy station under different power outputs
| 功率输出/MW | 故障类型 | AR | ||||||
| A相 | B相 | C相 | ||||||
| 0 | AG | 225 | 0 | 0 | ||||
| AB | 225 | 225 | 0 | |||||
| ABG | 225 | 225 | 0 | |||||
| ABC | 225 | 225 | 225 | |||||
| 10 | AG | 450 | 0 | 0 | ||||
| AB | 450 | 450 | 0 | |||||
| ABG | 450 | 450 | 0 | |||||
| ABC | 450 | 450 | 450 | |||||
| 20 | AG | 450 | 0 | 0 | ||||
| AB | 450 | 450 | 0 | |||||
| ABG | 450 | 450 | 0 | |||||
| ABC | 450 | 450 | 450 | |||||
| 故障类型 | AR | |||||
| A相 | B相 | C相 | ||||
| AG | 450 | 68 | 32 | |||
| AB | 448 | 450 | 62 | |||
| ABG | 450 | 450 | 104 | |||
| ABC | 450 | 446 | 446 | |||
表 5 噪声环境下发生不同故障AR值
Table 5 Different fault AR values occur in noise environment
| 故障类型 | AR | |||||
| A相 | B相 | C相 | ||||
| AG | 450 | 68 | 32 | |||
| AB | 448 | 450 | 62 | |||
| ABG | 450 | 450 | 104 | |||
| ABC | 450 | 446 | 446 | |||
图 16 保护区外f1三相短路故障且电流互感器饱和工况
Fig.16 Operating condition of f1 three-phase short-circuit fault outside the protection zone and current transformer saturation
| 1 | 蒲天骄, 刘克文, 陈乃仕, 等. 基于主动配电网的城市能源互联网体系架构及其关键技术[J]. 中国电机工程学报, 2015, 35 (14): 3511- 3521. |
| PU Tianjiao, LIU Kewen, CHEN Naishi, et al. Design of ADN based urban energy internet architecture and its technological issues[J]. Proceedings of the CSEE, 2015, 35 (14): 3511- 3521. | |
| 2 | 唐佳雄, 王国锋, 徐宇恒, 等. 配网线路新型灭弧装置熄灭工频电弧的仿真与试验研究[J]. 电测与仪表, 2022, 59 (8): 120- 126. |
| TANG Jiaxiong, WANG Guofeng, XU Yuheng, et al. Simulation and experimental research on extinguishing power frequency arc by novel arc extinguishing device in distribution line[J]. Electrical Measurement & Instrumentation, 2022, 59 (8): 120- 126. | |
| 3 | 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40 (17): 5493- 5506. |
| CHEN Guoping, DONG Yu, LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40 (17): 5493- 5506. | |
| 4 | 李铁成, 范辉, 臧谦, 等. 基于5G通信的有源配电网多点同步保护方案[J]. 中国电力, 2023, 56 (11): 113- 120. |
| LI Tiecheng, FAN Hui, ZANG Qian, et al. Multi-point synchronous protection scheme for active distribution network based on 5G communication[J]. Electric Power, 2023, 56 (11): 113- 120. | |
| 5 | 朱鹏程, 刘曌煜, 孙可, 等. 基于多分块交替方向乘子法的蜂巢状配电网分布式优化调度[J]. 中国电力, 2023, 56 (6): 90- 100. |
| ZHU Pengcheng, LIU Zhaoyu, SUN Ke, et al. Optimal scheduling of honeycomb distribution network based on BADMM[J]. Electric Power, 2023, 56 (6): 90- 100. | |
| 6 | 罗竟哲, 李杰, 王钢. T接逆变型分布式电源和负荷的馈线纵联保护新原理[J]. 广东电力, 2022, 35 (8): 41- 49. |
| LUO Jingzhe, LI Jie, WANG Gang. New principle of pilot protection for feeder T-connected with IIDG and load[J]. Guangdong Electric Power, 2022, 35 (8): 41- 49. | |
| 7 | 朱英伟, 徐峰, 吴佳毅, 等. 基于序分量的智能分布式配电网保护方案[J]. 广东电力, 2022, 35 (4): 47- 55. |
| ZHU Yingwei, XU Feng, WU Jiayi, et al. Intelligent distributed distribution network protection scheme based on sequence component[J]. Guangdong Electric Power, 2022, 35 (4): 47- 55. | |
| 8 | 曾翔, 文明浩, 钱堃, 等. 逆变型分布式电源接入对接地距离保护的影响与对策[J]. 智慧电力, 2023, 51 (1): 46- 53. |
| ZENG Xiang, WEN Minghao, QIAN Kun, et al. Influence of inverter-interfaced distributed generation integration on grounding distance protection and its strategies[J]. Smart Power, 2023, 51 (1): 46- 53. | |
| 9 | 高崇, 陈沛东, 曹华珍, 等. 中压配电网分布式智能后备保护方案[J]. 南方电网技术, 2023, 17 (8): 77- 84. |
| GAO Chong, CHEN Peidong, CAO Huazhen, et al. Distributed intelligent backup protection scheme of medium voltage distribution network[J]. Southern Power System Technology, 2023, 17 (8): 77- 84. | |
| 10 | 杨国生, 樊沛林, 王聪博, 等. 基于能量分布的新能源场站送出线路纵联保护[J]. 电网技术, 2023, 47 (4): 1415- 1424. |
| YANG Guosheng, FAN Peilin, WANG Congbo, et al. Pilot protection based on energy distribution for transmission line connected to renewable power plants[J]. Power System Technology, 2023, 47 (4): 1415- 1424. | |
| 11 | 王子璇, 马啸, 杨勇, 等. 计及不可测分支负荷电源助增效应的有源配网幅值差动保护新判据[J]. 中国电机工程学报, 2020, 40 (S1): 56- 68. |
| WANG Zixuan, MA Xiao, YANG Yong, et al. A new criterion of amplitude differential protection for active distribution network considering load power effect of unmeasurable branches[J]. Proceedings of the CSEE, 2020, 40 (S1): 56- 68. | |
| 12 | 刘幸蔚, 李永丽, 陈晓龙, 等. 逆变型分布式电源T接线路后纵联差动保护的改进方案[J]. 电网技术, 2016, 40 (4): 1257- 1264. |
| LIU Xingwei, LI Yongli, CHEN Xiaolong, et al. An improved scheme of longitudinal differential protection for teed lines with inverter-based distributed generations[J]. Power System Technology, 2016, 40 (4): 1257- 1264. | |
| 13 | 韩博文, 王钢, 李海锋, 等. 含逆变型分布式电源配电网的新型纵联保护方案[J]. 高电压技术, 2017, 43 (10): 3453- 3462. |
| HAN Bowen, WANG Gang, LI Haifeng, et al. Novel pilot protection scheme for distribution networks with inverter-interfaced distributed generators[J]. High Voltage Engineering, 2017, 43 (10): 3453- 3462. | |
| 14 | LIN X N, MA X, WANG Z X, et al. A novel current amplitude differential protection for active distribution network considering the source-effect of IM-type unmeasurable load branches[J]. International Journal of Electrical Power & Energy Systems, 2021, 129, 106780. |
| 15 | 王婷, 刘渊, 李凤婷, 等. 光伏T接高压配电网电流差动保护研究[J]. 电力系统保护与控制, 2015, 43 (13): 60- 65. |
| WANG Ting, LIU Yuan, LI Fengting, et al. Research on the current differential protection where PV access to the high voltage distribution network with T-type[J]. Power System Protection and Control, 2015, 43 (13): 60- 65. | |
| 16 | 魏东辉, 于舜尧, 房俊龙. 基于综合序电流的含光伏电源配电网纵联保护方案[J]. 太阳能学报, 2021, 42 (7): 185- 192. |
| WEI Donghui, YU Shunyao, FANG Junlong. Pilot protection scheme based on integrated sequence current for distribution network with photovoltaic[J]. Acta Energiae Solaris Sinica, 2021, 42 (7): 185- 192. | |
| 17 |
朱妍, 陆于平, 黄涛. 计及谐波频率特征的含风电配电网充分式电流幅值差动保护[J]. 电力系统自动化, 2020, 44 (16): 130- 136.
DOI |
|
ZHU Yan, LU Yuping, HUANG Tao. Sufficient current amplitude differential protection considering frequency characteristic of harmonics for distribution network with wind power[J]. Automation of Electric Power Systems, 2020, 44 (16): 130- 136.
DOI |
|
| 18 |
FANG Y, JIA K, YANG Z, et al. Impact of inverter-interfaced renewable energy generators on distance protection and an improved scheme[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (9): 7078- 7088.
DOI |
| 19 |
PRASAD C D, BISWAL M, ABDELAZIZ A Y. Adaptive differential protection scheme for wind farm integrated power network[J]. Electric Power Systems Research, 2020, 187, 106452.
DOI |
| 20 | 游步新, 卜京, 殷明慧. 基于瞬时电流特征的电流互感器饱和识别改进方法[J]. 电力自动化设备, 2018, 38 (4): 29- 35. |
| YOU Buxin, BU Jing, YIN Minghui. Improved identification of CT saturation based on transient current characteristics[J]. Electric Power Automation Equipment, 2018, 38 (4): 29- 35. | |
| 21 | ZHOU C H, ZOU G B, DU X G, et al. Adaptive current differential protection for active distribution network considering time synchronization error[J]. International Journal of Electrical Power & Energy Systems, 2022, 140, 108085. |
| 22 | 贾科, 郑黎明, 毕天姝, 等. 基于余弦相似度的风电场站送出线路纵联保护[J]. 中国电机工程学报, 2019, 39 (21): 6263- 6275. |
| JIA Ke, ZHENG Liming, BI Tianshu, et al. Pilot protection based on cosine similarity for transmission line connected to wind farms[J]. Proceedings of the CSEE, 2019, 39 (21): 6263- 6275. | |
| 23 | 胡勇, 郑黎明, 贾科, 等. 基于Tanimoto相似度的光伏场站送出线路纵联保护[J]. 电力系统保护与控制, 2021, 49 (3): 74- 79. |
| HU Yong, ZHENG Liming, JIA Ke, et al. Pilot protection based on Tanimoto similarity for a photovoltaic station transmission line[J]. Power System Protection and Control, 2021, 49 (3): 74- 79. | |
| 24 |
MORGADO A, HUQ K M S, MUMTAZ S, et al. A survey of 5G technologies: regulatory, standardization and industrial perspectives[J]. Digital Communications and Networks, 2018, 4 (2): 87- 97.
DOI |
| 25 | 娄为, 韩学军, 韩俊, 等. 基于5G和光纤综合通道的输电线路差动保护方法[J]. 电力系统保护与控制, 2022, 50 (1): 158- 166. |
| LOU Wei, HAN Xuejun, HAN Jun, et al. A transmission line differential protection method based on 5G and optical fiber integrated channels[J]. Power System Protection and Control, 2022, 50 (1): 158- 166. | |
| 26 | 邹晓峰, 沈冰, 蒋献伟. 5G通信条件下配网差动保护快速动作方案研究[J]. 电力系统保护与控制, 2022, 50 (16): 163- 169. |
| ZOU Xiaofeng, SHEN Bing, JIANG Xianwei. A quick action scheme of differential protection for a distribution network with 5G communication[J]. Power System Protection and Control, 2022, 50 (16): 163- 169. |
| [1] | 张宸宇, 喻建瑜, 史明明, 刘瑞煌. 基于构网型储能的新能源微电网电压动态控制性能分析与优化[J]. 中国电力, 2025, 58(9): 115-123. |
| [2] | 周勤勇, 郝绍煦, 董武, 张立波, 张健, 贺海磊, 赵蕾蕾. “十五五”电网规划安全稳定分析关键问题[J]. 中国电力, 2025, 58(9): 138-147. |
| [3] | 吴问足, 王旭辉, 卢苑, 陈婉, 田石金, 陈娴. 基于分形理论的电力现货市场出清电价预测方法[J]. 中国电力, 2025, 58(9): 183-193. |
| [4] | 张楠, 郭庆雷, 杜哲, 王栋, 张岩, 赵靓, 蒋宇. 面向分布式新能源聚合交易的可信合约化交易模型[J]. 中国电力, 2025, 58(9): 205-218. |
| [5] | 马冰清, 李振兴. 考虑电流限幅的构网型光伏场站送出线路纵联保护新原理[J]. 中国电力, 2025, 58(8): 164-175. |
| [6] | 袁松, 葛昭, 唐佳杰, 梅家葆. 基于复合序电流特征的构网型新能源外送线路纵联保护[J]. 中国电力, 2025, 58(8): 185-192. |
| [7] | 谭玲玲, 张文龙, 康志豪, 叶平峰, 高业豪, 张玉敏. 计及惯量响应与一次调频参数优化的新能源基地构网型储能规划[J]. 中国电力, 2025, 58(7): 147-161. |
| [8] | 叶小宁, 王彩霞, 时智勇, 步雨洛, 杨超, 吴思. 国外高比例新能源消纳分析及对中国新能源可持续发展的建议[J]. 中国电力, 2025, 58(6): 137-144. |
| [9] | 秦昆, 渠志江, 韩建伟, 许涛, 高峰, 迟晓莉. 基于可调虚拟阻抗的“柔-储-充”装置电池优化运行策略[J]. 中国电力, 2025, 58(6): 145-155. |
| [10] | 叶希, 黄格超, 王曦, 王彦沣, 朱童, 何川, 张瑜祺. 基于信息间隙决策理论的受端电网电压稳定多源协同优化调度[J]. 中国电力, 2025, 58(5): 121-136. |
| [11] | 张睿骁, 梁利, 王定美. 新能源场站快速频率响应分析与高效测试装置设计[J]. 中国电力, 2025, 58(5): 144-151. |
| [12] | 张磊, 马晓伟, 王满亮, 陈力, 高丙团. 互联新能源电力系统区内AGC机组分布式协同控制策略[J]. 中国电力, 2025, 58(3): 8-19. |
| [13] | 汪林光, 李旭涛, 任勇, 谢小荣. 基于元启发式算法的新能源电力系统振荡稳定性最差工况搜索方法[J]. 中国电力, 2025, 58(3): 65-72. |
| [14] | 郑永乐, 韦仁博, 冯宇昂, 张艺涵, 崔世常, 武振宇, 蒋小亮, 李慧璇, 艾小猛, 方家琨. 农村新型电力系统精细化时序生产模拟方法[J]. 中国电力, 2025, 58(10): 71-81. |
| [15] | 邱忠涛, 格根敖其, 贾跃龙, 吴鹏, 张凯, 孙毅, 朱进. 新型电力系统供需协同全要素理论框架[J]. 中国电力, 2025, 58(10): 147-162. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编