中国电力 ›› 2025, Vol. 58 ›› Issue (8): 164-175.DOI: 10.11930/j.issn.1004-9649.202501046
收稿日期:
2025-01-15
发布日期:
2025-08-26
出版日期:
2025-08-28
作者简介:
基金资助:
MA Bingqing1(), LI Zhenxing1,2(
)
Received:
2025-01-15
Online:
2025-08-26
Published:
2025-08-28
Supported by:
摘要:
构网型新能源因兼备优良的阻尼与惯量支撑特性受到广泛关注,但其复杂的故障响应特征致使传统保护适应性下降。为此,提出了故障限流与波形相似度相结合的纵联保护新方案。首先基于构网型电源故障电流解析模型,揭示传统保护失效机理;进一步考虑逆变器耐受电流和并网规范要求,设计自适应虚拟阻抗计算模块,形成构网型电源辅助控制策略,实现系统短路时逆变器过电流的有效抑制;最终以波形相似性理论为基础,用余弦相似度量化线路两侧电流波形,分析线路区内外故障时相似度的明显差异性,构造纵联保护新判据。利用PSCAD/EMTDC软件构建仿真模型,模拟多种故障场景的验证结果表明所提方案可实现短路电流抑制同时完成区内、外故障准确识别,且在高阻接地的情况下,仍然具有较高的可靠性、灵敏性和速动性。
马冰清, 李振兴. 考虑电流限幅的构网型光伏场站送出线路纵联保护新原理[J]. 中国电力, 2025, 58(8): 164-175.
MA Bingqing, LI Zhenxing. A New Pilot Protection for Transmission Lines Based on Overcurrent Limiting from Grid-Forming Power Sources[J]. Electric Power, 2025, 58(8): 164-175.
模块名称 | 参数名称 | 数值 | ||
光伏场站 | 额定容量/MW | 200 | ||
直流电容/μF | ||||
LCL滤波电感参数/μF,mF | 200/0.25 | |||
LCL滤波电容参数/mH | 0.5 | |||
电流环PI参数 (p.u.) | 0.15/0.4 | |||
主变 | 额定容量/MW | 100 | ||
变比/kV | 220/35 | |||
联结方式 | YNd | |||
短路阻抗/% | 10 | |||
送出线路 | 正序电阻/(Ω/m) | 1.5 e-4 | ||
正序感抗/(Ω/m) | ||||
正序容抗/(MΩ*m) | ||||
负序电阻/(Ω/m) | 3.15 e-4 | |||
负序感抗/(Ω/m) |
表 1 模型搭建关键参数
Table 1 Parameters of Simulation Model
模块名称 | 参数名称 | 数值 | ||
光伏场站 | 额定容量/MW | 200 | ||
直流电容/μF | ||||
LCL滤波电感参数/μF,mF | 200/0.25 | |||
LCL滤波电容参数/mH | 0.5 | |||
电流环PI参数 (p.u.) | 0.15/0.4 | |||
主变 | 额定容量/MW | 100 | ||
变比/kV | 220/35 | |||
联结方式 | YNd | |||
短路阻抗/% | 10 | |||
送出线路 | 正序电阻/(Ω/m) | 1.5 e-4 | ||
正序感抗/(Ω/m) | ||||
正序容抗/(MΩ*m) | ||||
负序电阻/(Ω/m) | 3.15 e-4 | |||
负序感抗/(Ω/m) |
图 10 线路发生区内、外故障时两侧电流及相似度计算值
Fig.10 Currents on both sides and similarity calculation values of the transmission line during internal and external faults
故障 位置 | 过渡电阻/Ω | 两侧余弦相似度计算值 | ||||||
A相 | B相 | C相 | ||||||
F1 | 10 | –1.000 0 | –1.000 0 | –1.000 0 | ||||
30 | –1.000 0 | –0.999 9 | –1.000 0 | |||||
60 | –1.000 0 | –0.903 8 | –1.000 0 | |||||
100 | –0.999 6 | –0.997 8 | –0.999 9 | |||||
F2 | 10 | 0.999 9 | –1.000 0 | –1.000 0 | ||||
30 | 0.997 4 | –0.992 4 | –1.000 0 | |||||
60 | 0.979 4 | –0.992 8 | –1.000 0 | |||||
100 | 0.911 7 | –0.999 2 | –0.999 9 | |||||
F3 | 10 | 0.999 3 | –0.999 9 | –1.000 0 | ||||
30 | 0.994 0 | –0.943 5 | –1.000 0 | |||||
60 | 0.994 0 | –0.943 5 | –1.000 0 | |||||
100 | 0.861 7 | –0.999 7 | –0.999 9 | |||||
F4 | 10 | 0.998 4 | –0.935 2 | –1.000 0 | ||||
30 | 0.987 7 | –0.998 7 | –0.999 9 | |||||
60 | 0.926 0 | –0.999 7 | –0.999 9 | |||||
100 | 0.742 9 | –0.999 8 | –0.999 9 | |||||
F5 | 10 | –1.000 0 | –0.999 6 | –0.999 9 | ||||
30 | –0.999 9 | –0.999 8 | –0.999 9 | |||||
60 | –0.999 9 | –0.999 9 | –0.999 8 | |||||
100 | –0.996 8 | –0.999 9 | –0.999 8 |
表 2 不同过渡阻抗场景下保护性能
Table 2 Protection performance under different transition resistance
故障 位置 | 过渡电阻/Ω | 两侧余弦相似度计算值 | ||||||
A相 | B相 | C相 | ||||||
F1 | 10 | –1.000 0 | –1.000 0 | –1.000 0 | ||||
30 | –1.000 0 | –0.999 9 | –1.000 0 | |||||
60 | –1.000 0 | –0.903 8 | –1.000 0 | |||||
100 | –0.999 6 | –0.997 8 | –0.999 9 | |||||
F2 | 10 | 0.999 9 | –1.000 0 | –1.000 0 | ||||
30 | 0.997 4 | –0.992 4 | –1.000 0 | |||||
60 | 0.979 4 | –0.992 8 | –1.000 0 | |||||
100 | 0.911 7 | –0.999 2 | –0.999 9 | |||||
F3 | 10 | 0.999 3 | –0.999 9 | –1.000 0 | ||||
30 | 0.994 0 | –0.943 5 | –1.000 0 | |||||
60 | 0.994 0 | –0.943 5 | –1.000 0 | |||||
100 | 0.861 7 | –0.999 7 | –0.999 9 | |||||
F4 | 10 | 0.998 4 | –0.935 2 | –1.000 0 | ||||
30 | 0.987 7 | –0.998 7 | –0.999 9 | |||||
60 | 0.926 0 | –0.999 7 | –0.999 9 | |||||
100 | 0.742 9 | –0.999 8 | –0.999 9 | |||||
F5 | 10 | –1.000 0 | –0.999 6 | –0.999 9 | ||||
30 | –0.999 9 | –0.999 8 | –0.999 9 | |||||
60 | –0.999 9 | –0.999 9 | –0.999 8 | |||||
100 | –0.996 8 | –0.999 9 | –0.999 8 |
故障 位置 | 场站出力/ MW | 两侧余弦相似度计算值 | ||||||
A相 | B相 | C相 | ||||||
F1 | 100 | –1.000 0 | –1.000 0 | –1.000 0 | ||||
50 | –1.000 0 | –1.000 0 | –1.000 0 | |||||
1 | –1.000 0 | –1.000 0 | –1.000 0 | |||||
F2 | 100 | 1.000 0 | –1.000 0 | –1.000 0 | ||||
50 | 1.000 0 | –1.000 0 | –1.000 0 | |||||
1 | 0.998 9 | –1.000 0 | –1.000 0 | |||||
F3 | 100 | 0.999 9 | –0.999 8 | –1.000 0 | ||||
50 | 0.999 4 | –1.000 0 | –1.000 0 | |||||
1 | 0.996 0 | –1.000 0 | –1.000 0 | |||||
F4 | 100 | 0.999 7 | –0.998 2 | –1.000 0 | ||||
50 | 0.998 7 | –0.999 5 | –1.000 0 | |||||
1 | 0.992 2 | –0.999 8 | –1.000 0 | |||||
F5 | 100 | –1.000 0 | –0.999 1 | –0.999 9 | ||||
50 | –1.000 0 | –0.933 8 | –1.000 0 | |||||
1 | –1.000 0 | –0.998 9 | –1.000 0 |
表 3 不同出力场景下保护性能
Table 3 Protection performance under different output scenarios
故障 位置 | 场站出力/ MW | 两侧余弦相似度计算值 | ||||||
A相 | B相 | C相 | ||||||
F1 | 100 | –1.000 0 | –1.000 0 | –1.000 0 | ||||
50 | –1.000 0 | –1.000 0 | –1.000 0 | |||||
1 | –1.000 0 | –1.000 0 | –1.000 0 | |||||
F2 | 100 | 1.000 0 | –1.000 0 | –1.000 0 | ||||
50 | 1.000 0 | –1.000 0 | –1.000 0 | |||||
1 | 0.998 9 | –1.000 0 | –1.000 0 | |||||
F3 | 100 | 0.999 9 | –0.999 8 | –1.000 0 | ||||
50 | 0.999 4 | –1.000 0 | –1.000 0 | |||||
1 | 0.996 0 | –1.000 0 | –1.000 0 | |||||
F4 | 100 | 0.999 7 | –0.998 2 | –1.000 0 | ||||
50 | 0.998 7 | –0.999 5 | –1.000 0 | |||||
1 | 0.992 2 | –0.999 8 | –1.000 0 | |||||
F5 | 100 | –1.000 0 | –0.999 1 | –0.999 9 | ||||
50 | –1.000 0 | –0.933 8 | –1.000 0 | |||||
1 | –1.000 0 | –0.998 9 | –1.000 0 |
故障类型 | 信噪比/dB | 两侧余弦相似度计算值 | ||||||
A相 | B相 | C相 | ||||||
AG | 10 | 0.999 9 | –0.998 5 | –0.999 9 | ||||
20 | 0.999 6 | –0.983 6 | –0.998 4 | |||||
30 | 0.997 1 | –0.962 9 | –0.977 4 | |||||
40 | 0.989 7 | –0.911 3 | –0.944 2 | |||||
AB | 10 | 0.995 4 | 0.989 5 | –0.998 1 | ||||
20 | 0.992 5 | 0.988 7 | –0.985 3 | |||||
30 | 0.950 4 | 0.971 2 | –0.906 9 | |||||
40 | 0.707 6 | 0.865 6 | –0.905 4 | |||||
ABG | 10 | 0.994 5 | 0.734 1 | –0.998 7 | ||||
20 | 0.992 2 | 0.726 3 | –0.986 4 | |||||
30 | 0.981 4 | 0.677 9 | –0.977 8 | |||||
40 | 0.888 4 | 0.549 2 | –0.988 8 | |||||
ABCG | 10 | 0.900 2 | 0.549 2 | 0.759 5 | ||||
20 | 0.989 3 | 0.743 6 | 0.972 2 | |||||
30 | 0.996 5 | 0.792 5 | 0.986 6 | |||||
40 | 0.997 7 | 0.814 3 | 0.987 5 |
表 4 发生不同故障类型时不同信噪比场景下保护性能
Table 4 Protection performance under different SNR scenarios for various fault types
故障类型 | 信噪比/dB | 两侧余弦相似度计算值 | ||||||
A相 | B相 | C相 | ||||||
AG | 10 | 0.999 9 | –0.998 5 | –0.999 9 | ||||
20 | 0.999 6 | –0.983 6 | –0.998 4 | |||||
30 | 0.997 1 | –0.962 9 | –0.977 4 | |||||
40 | 0.989 7 | –0.911 3 | –0.944 2 | |||||
AB | 10 | 0.995 4 | 0.989 5 | –0.998 1 | ||||
20 | 0.992 5 | 0.988 7 | –0.985 3 | |||||
30 | 0.950 4 | 0.971 2 | –0.906 9 | |||||
40 | 0.707 6 | 0.865 6 | –0.905 4 | |||||
ABG | 10 | 0.994 5 | 0.734 1 | –0.998 7 | ||||
20 | 0.992 2 | 0.726 3 | –0.986 4 | |||||
30 | 0.981 4 | 0.677 9 | –0.977 8 | |||||
40 | 0.888 4 | 0.549 2 | –0.988 8 | |||||
ABCG | 10 | 0.900 2 | 0.549 2 | 0.759 5 | ||||
20 | 0.989 3 | 0.743 6 | 0.972 2 | |||||
30 | 0.996 5 | 0.792 5 | 0.986 6 | |||||
40 | 0.997 7 | 0.814 3 | 0.987 5 |
故障类型 | 数据窗长/ ms | 两侧余弦相似度计算值 | ||||||
A相 | B相 | C相 | ||||||
AG | 5 | 0.973 1 | –0.997 8 | –0.998 6 | ||||
10 | 0.999 9 | –0.999 8 | –1.000 0 | |||||
15 | 0.930 6 | –0.999 9 | –0.995 5 | |||||
20 | 0.997 4 | –0.979 3 | –0.999 9 | |||||
AB | 5 | 0.992 1 | 0.998 3 | –0.997 2 | ||||
10 | 0.995 8 | 0.990 2 | –0.999 8 | |||||
15 | 0.965 1 | 0.925 2 | –0.999 8 | |||||
20 | 0.943 8 | 0.954 1 | –0.999 5 | |||||
ABG | 5 | 0.996 4 | 0.609 4 | –0.998 2 | ||||
10 | 0.994 4 | 0.724 8 | –0.999 6 | |||||
15 | 0.982 4 | 0.844 7 | –0.999 9 | |||||
20 | 0.863 1 | 0.997 7 | –0.930 7 | |||||
ABCG | 5 | 0.975 5 | 0.031 8 | 0.701 7 | ||||
10 | 0.997 8 | 0.812 4 | 0.987 6 | |||||
15 | 0.982 3 | 0.950 3 | 0.967 5 | |||||
20 | 0.996 5 | 0.994 7 | 0.970 8 |
表 5 不同数据窗长情况下保护性能
Table 5 Protection performance under different data window lengths
故障类型 | 数据窗长/ ms | 两侧余弦相似度计算值 | ||||||
A相 | B相 | C相 | ||||||
AG | 5 | 0.973 1 | –0.997 8 | –0.998 6 | ||||
10 | 0.999 9 | –0.999 8 | –1.000 0 | |||||
15 | 0.930 6 | –0.999 9 | –0.995 5 | |||||
20 | 0.997 4 | –0.979 3 | –0.999 9 | |||||
AB | 5 | 0.992 1 | 0.998 3 | –0.997 2 | ||||
10 | 0.995 8 | 0.990 2 | –0.999 8 | |||||
15 | 0.965 1 | 0.925 2 | –0.999 8 | |||||
20 | 0.943 8 | 0.954 1 | –0.999 5 | |||||
ABG | 5 | 0.996 4 | 0.609 4 | –0.998 2 | ||||
10 | 0.994 4 | 0.724 8 | –0.999 6 | |||||
15 | 0.982 4 | 0.844 7 | –0.999 9 | |||||
20 | 0.863 1 | 0.997 7 | –0.930 7 | |||||
ABCG | 5 | 0.975 5 | 0.031 8 | 0.701 7 | ||||
10 | 0.997 8 | 0.812 4 | 0.987 6 | |||||
15 | 0.982 3 | 0.950 3 | 0.967 5 | |||||
20 | 0.996 5 | 0.994 7 | 0.970 8 |
故障类型 | 采样率/kHz | 两侧余弦相似度计算值 | ||||||
A相 | B相 | C相 | ||||||
AG | 1.0 | 0.999 9 | –0.999 8 | –1.000 0 | ||||
1.2 | 0.955 2 | –0.998 0 | –0.999 3 | |||||
4.0 | 1.000 0 | –0.999 6 | –0.999 9 | |||||
5.0 | 1.000 0 | –0.999 8 | –1.000 0 | |||||
AB | 1.0 | 0.995 8 | 0.990 2 | –0.999 8 | ||||
1.2 | 0.798 2 | 0.740 1 | –0.998 2 | |||||
4.0 | 0.976 7 | 0.977 2 | –0.999 7 | |||||
5.0 | 0.985 8 | 0.981 9 | –0.999 7 | |||||
ABG | 1.0 | 0.994 4 | 0.724 8 | –0.999 6 | ||||
1.2 | 0.953 4 | 0.602 7 | –0.998 1 | |||||
4.0 | 0.985 5 | 0.842 2 | –0.998 1 | |||||
5.0 | 0.989 9 | 0.806 5 | –0.999 1 | |||||
ABCG | 1.0 | 0.825 4 | 0.833 2 | 0.772 5 | ||||
1.2 | 0.795 5 | 0.767 2 | 0.810 1 | |||||
4.0 | 0.988 3 | 0.883 7 | 0.868 9 | |||||
5.0 | 0.992 7 |
表 6 不同采样率下保护性能
Table 6 Protection performance under different sampling rate scenarios
故障类型 | 采样率/kHz | 两侧余弦相似度计算值 | ||||||
A相 | B相 | C相 | ||||||
AG | 1.0 | 0.999 9 | –0.999 8 | –1.000 0 | ||||
1.2 | 0.955 2 | –0.998 0 | –0.999 3 | |||||
4.0 | 1.000 0 | –0.999 6 | –0.999 9 | |||||
5.0 | 1.000 0 | –0.999 8 | –1.000 0 | |||||
AB | 1.0 | 0.995 8 | 0.990 2 | –0.999 8 | ||||
1.2 | 0.798 2 | 0.740 1 | –0.998 2 | |||||
4.0 | 0.976 7 | 0.977 2 | –0.999 7 | |||||
5.0 | 0.985 8 | 0.981 9 | –0.999 7 | |||||
ABG | 1.0 | 0.994 4 | 0.724 8 | –0.999 6 | ||||
1.2 | 0.953 4 | 0.602 7 | –0.998 1 | |||||
4.0 | 0.985 5 | 0.842 2 | –0.998 1 | |||||
5.0 | 0.989 9 | 0.806 5 | –0.999 1 | |||||
ABCG | 1.0 | 0.825 4 | 0.833 2 | 0.772 5 | ||||
1.2 | 0.795 5 | 0.767 2 | 0.810 1 | |||||
4.0 | 0.988 3 | 0.883 7 | 0.868 9 | |||||
5.0 | 0.992 7 |
1 |
王瑞欣, 孙吉广, 刘艳, 等. 计及新能源场站黑启动时空支撑能力的分区目标网架优化[J]. 中国电力, 2024, 57 (10): 143- 149.
DOI |
WANG Ruixin, SUN Jiguang, LIU Yan, et al. Optimization of power system black start partition target network taking into account the black start space-time support capability of new energy station[J]. Electric Power, 2024, 57 (10): 143- 149.
DOI |
|
2 |
张睿骁, 梁利, 王定美. 新能源场站快速频率响应分析与高效测试装置设计[J]. 中国电力, 2025, 58 (5): 144- 151.
DOI |
ZHANG Ruixiao, LIANG Li, WANG Dingmei. Fast frequency response analysis and efficient test device design of new energy station[J]. Electric Power, 2025, 58 (5): 144- 151.
DOI |
|
3 |
周洋, 黄德志, 李培栋, 等. 考虑平衡端点相位不对称及光伏接入的低压配电网三相潮流模型[J]. 中国电力, 2024, 57 (10): 190- 198.
DOI |
ZHOU Yang, HUANG Dezhi, LI Peidong, et al. A three-phase power flow model for low-voltage distribution networks considering balanced bus phase asymmetry and photovoltaic access[J]. Electric Power, 2024, 57 (10): 190- 198.
DOI |
|
4 | 杜夏恒, 赫玉莹, 邹文, 等. 跟网型和构网型逆变器的阻抗无源化方法综述[J]. 东北电力大学学报, 2024, 44 (2): 12- 20. |
DU Xiaheng, HE Yuying, ZOU Wen, et al. An overview of impedance passivation methods forGrid-following and grid-forming inverters[J]. Journal of Northeast Electric Power University, 2024, 44 (2): 12- 20. | |
5 |
兰国芹, 陆烨, 阚严生, 等. 综合能源服务发展趋势与对策研究[J]. 发电技术, 2025, 46 (1): 19- 30.
DOI |
LAN Guoqin, LU Ye, KAN Yansheng, et al. Research on the development trends and countermeasures of integrated energy services[J]. Power Generation Technology, 2025, 46 (1): 19- 30.
DOI |
|
6 |
周洋, 施正香, 洪灿梅, 等. 基于电网跳闸数据分析的供电线路异常状态预警方法[J]. 电网与清洁能源, 2023, 39 (9): 40- 46.
DOI |
ZHOU Yang, SHI Zhengxiang, HONG Canmei, et al. An early warning method of abnormal state of power supply line based on the analysis of power network trip data[J]. Power System and Clean Energy, 2023, 39 (9): 40- 46.
DOI |
|
7 |
李亚楼, 赵飞, 樊雪君. 构网型储能及其应用综述[J]. 发电技术, 2025, 46 (2): 386- 398.
DOI |
LI Yalou, ZHAO Fei, FAN Xuejun. Review of grid-forming energy storage and its applications[J]. Power Generation Technology, 2025, 46 (2): 386- 398.
DOI |
|
8 |
张心怡, 杨波. 考虑构网型和跟网型变流器的孤岛微电网小信号稳定性分析[J]. 综合智慧能源, 2024, 46 (2): 12- 18.
DOI |
ZHANG Xinyi, YANG Bo. Stability analysis on islanded microgrids with grid-forming and grid-following converters[J]. Integrated Intelligent Energy, 2024, 46 (2): 12- 18.
DOI |
|
9 | 项中明, 倪秋龙, 李振华, 等. 采用功率同步控制的构网型换流器并网暂态同步稳定研究[J]. 浙江电力, 2023, 42 (9): 77- 88. |
XIANG Zhongming, NI Qiulong, LI Zhenhua, et al. Research on transient synchronous stability of integrated grid-forming converters using power synchronization control[J]. Zhejiang Electric Power, 2023, 42 (9): 77- 88. | |
10 | 温春雪, 毛健, 王鹏, 等. 基于虚拟同步发电机的构网型光储变流器控制策略研究[J]. 内蒙古电力技术, 2024, 42 (1): 1- 8. |
WEN Chunxue, MAO Jian, WANG Peng, et al. Research on control strategy of grid-configured photovoltaic storage converters based on VSG[J]. Inner Mongolia Electric Power, 2024, 42 (1): 1- 8. | |
11 | 朱作滨, 孙树敏, 丁月明, 等. 基于VSG的低电压穿越控制策略研究[J]. 太阳能学报, 2024, 45 (2): 376- 383. |
ZHU Zuobin, SUN Shumin, DING Yueming, et al. Study on low voltage ride through control strategy based on vsg[J]. Acta Energiae Solaris Sinica, 2024, 45 (2): 376- 383. | |
12 | 贾科, 刘芸, 毕天姝, 等. 基于自适应虚拟阻抗的构网型新能源电源不对称故障穿越控制[J]. 中国电机工程学报, 2025, 45 (8): 2946- 2956. |
JIA Ke, LIU Yun, BI Tianshu, et al. Asymmetric fault ride through of grid-forming control of renewable energy based on adaptive virtual impedance[J]. Proceedings of the CSEE, 2025, 45 (8): 2946- 2956. | |
13 |
FAN B, LIU T, ZHAO F Z, et al. A review of current-limiting control of grid-forming inverters under symmetrical disturbances[J]. IEEE Open Journal of Power Electronics, 2022, 3, 955- 969.
DOI |
14 |
LI T, LI Y L, CHEN X L, et al. Research on AC microgrid with current-limiting ability using power-state equation and improved Lyapunov-function method[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9 (6): 7306- 7319.
DOI |
15 |
颜湘武, 贾焦心, 王德胜, 等. 虚拟同步发电机的并网功率控制及模式平滑切换[J]. 电力系统自动化, 2018, 42 (9): 91- 99.
DOI |
YAN Xiangwu, JIA Jiaoxin, WANG Desheng, et al. Power control and smooth mode switchover for grid-connected virtual synchronous generators[J]. Automation of Electric Power Systems, 2018, 42 (9): 91- 99.
DOI |
|
16 | 刘远, 孟建辉, 王健维, 等. 基于虚拟电容的构网型MMC快速平滑切换策略[J]. 电力系统及其自动化学报, 2024, 36 (6): 12- 22. |
LIU Yuan, MENG Jianhui, WANG Jianwei, et al. Fast and smooth switching strategy for grid-forming MMC based on virtual capacitors[J]. Proceedings of the CSU-EPSA, 2024, 36 (6): 12- 22. | |
17 | 尚磊, 胡家兵, 袁小明, 等. 电网对称故障下虚拟同步发电机建模与改进控制[J]. 中国电机工程学报, 2017, 37 (2): 403- 412. |
SHANG Lei, HU Jiabing, YUAN Xiaoming, et al. Modeling and improved control of virtual synchronous generators under symmetrical faults of grid[J]. Proceedings of the CSEE, 2017, 37 (2): 403- 412. | |
18 |
XIONG L S, LIU X K, ZHAO C Y, et al. A fast and robust real-time detection algorithm of decaying DC transient and harmonic components in three-phase systems[J]. IEEE Transactions on Power Electronics, 2020, 35 (4): 3332- 3336.
DOI |
19 |
季亮, 俞紫琳, 李博通, 等. 基于提升距离保护适应性的改进VSG控制策略研究[J]. 智慧电力, 2024, 52 (6): 9- 15, 70.
DOI |
JI Liang, YU Zilin, LI Botong, et al. Improved VSG control strategy to enhance the adaptability of distance protection[J]. Smart Power, 2024, 52 (6): 9- 15, 70.
DOI |
|
20 | 段建东, 崔帅帅, 刘吴骥, 等. 基于电流频率差的有源配电网线路保护[J]. 中国电机工程学报, 2016, 36 (11): 2927- 2934. |
DUAN Jiandong, CUI Shuaishuai, LIU Wuji, et al. Line protection based on current frequency difference for active distribution network[J]. Proceedings of the CSEE, 2016, 36 (11): 2927- 2934. | |
21 | 贾科, 杨哲, 魏超, 等. 基于斯皮尔曼等级相关系数的新能源送出线路纵联保护[J]. 电力系统自动化, 2020, 44 (15): 103- 111. |
JIA Ke, YANG Zhe, WEI Chao, et al. Pilot protection based on spearman rank correlation coefficient for transmission line connected to renewable energy source[J]. Automation of Electric Power Systems, 2020, 44 (15): 103- 111. | |
22 | 彭放, 高厚磊, 郭一飞, 等. 构网逆变电源故障穿越控制策略及其对保护影响的研究综述[J]. 电网技术, 2024, 48 (9): 3673- 3685. |
PENG Fang, GAO Houlei, GUO Yifei, et al. A review of fault ride-through control strategies of grid-forming inverter-based resources and the influence on protection[J]. Power System Technology, 2024, 48 (9): 3673- 3685. | |
23 | 廖晓玉, 臧睿, 胡家跃. 光纤电流差动保护及其整定计算[J]. 继电器, 2006, 34 (21): 9- 13. |
LIAO Xiaoyu, ZANG Rui, HU Jiayue. Line fiber optical differential protection and its setting calculation[J]. Relay, 2006, 34 (21): 9- 13. | |
24 |
邢鹏翔, 贾璇悦, 许长清, 等. VSG低电压穿越的特性分析及控制方法研究[J]. 电网与清洁能源, 2022, 38 (8): 130- 137, 143.
DOI |
XING Pengxiang, JIA Xuanyue, XU Changqing, et al. A study on characteristic analysis and control methods of low voltage ride through for the VSG[J]. Advances of Power System & Hydroelectric Engineering, 2022, 38 (8): 130- 137, 143.
DOI |
|
25 | 刘航, 王跃, 刘永慧, 等. 基于定量设计虚拟阻抗的VSG低电压穿越策略[J]. 高电压技术, 2022, 48 (1): 245- 256. |
LIU Hang, WANG Yue, LIU Yonghui, et al. The LVRT strategy for VSG based on the quantitatively designed virtual impedance[J]. High Voltage Engineering, 2022, 48 (1): 245- 256. | |
26 | 毕天姝, 李彦宾, 贾科, 等. 基于暂态电流波形相关性的新能源场站送出线路纵联保护[J]. 中国电机工程学报, 2018, 38 (7): 2012- 2019, 2216. |
BI Tianshu, LI Yanbin, JIA Ke, et al. Transient current waveform similarity based pilot protection for transmission lines connected to renewable energy power plants[J]. Proceedings of the CSEE, 2018, 38 (7): 2012- 2019, 2216. | |
27 |
朱佳, 王峰, 李一泉, 等. 基于Tanimoto相似度的变压器零序差动保护约束方案[J]. 中国电力, 2023, 56 (8): 193- 199.
DOI |
ZHU Jia, WANG Feng, LI Yiquan, et al. Restraint scheme of transformer zero sequence differential protection based on tanimoto similarity[J]. Electric Power, 2023, 56 (8): 193- 199.
DOI |
|
28 | 贾科, 郑黎明, 毕天姝, 等. 基于余弦相似度的风电场站送出线路纵联保护[J]. 中国电机工程学报, 2019, 39 (21): 6263- 6275. |
JIA Ke, ZHENG Liming, BI Tianshu, et al. Pilot protection based on cosine similarity for transmission line connected to wind farms[J]. Proceedings of the CSEE, 2019, 39 (21): 6263- 6275. | |
29 | 武奕彤, 高厚磊, 袁通, 等. 基于特勒根定理的风场送出线路新型纵联保护[J]. 电力系统保护与控制, 2023, 51 (6): 117- 126. |
WU Yitong, GAO Houlei, YUAN Tong, et al. Novel pilot protection for wind farm transmission lines based on Tellegen's theorem[J]. Power System Protection and Control, 2023, 51 (6): 117- 126. |
[1] | 袁松, 葛昭, 唐佳杰, 梅家葆. 基于复合序电流特征的构网型新能源外送线路纵联保护[J]. 中国电力, 2025, 58(8): 185-192. |
[2] | 秦昆, 渠志江, 韩建伟, 许涛, 高峰, 迟晓莉. 基于可调虚拟阻抗的“柔-储-充”装置电池优化运行策略[J]. 中国电力, 2025, 58(6): 145-155. |
[3] | 陈茂新, 王凯伦, 沈豫, 曾振松, 林学根, 宋强. 适用于二极管整流送出的海上风机构网型控制方案比较[J]. 中国电力, 2025, 58(5): 166-175. |
[4] | 沙兆义, 王聪博, 詹荣荣, 余越, 王剑锋. 基于故障全电流多阶突变的换流器并网线路纵联保护[J]. 中国电力, 2024, 57(2): 62-71. |
[5] | 李铁成, 范辉, 张卫明, 王献志, 张艺宏, 戴志辉. 基于5G通信的有源配电网新能源送出线路纵联保护[J]. 中国电力, 2024, 57(11): 139-150. |
[6] | 戴志辉, 柳梅元, 韦舒清, 朱卫平, 王文卓. 基于超导磁储能的光伏场站送出线路距离保护[J]. 中国电力, 2024, 57(10): 102-114. |
[7] | 何维轩, 樊征臻, 霍姚彤, 梁营玉. 基于交叉熵的海上风电经柔性低频送出系统海缆纵联保护[J]. 中国电力, 2023, 56(11): 38-48. |
[8] | 王波, 张占营, 张霄, 席晟哲, 邓锦, 米阳. 直流微电网分布式储能系统精确电流分配策略[J]. 中国电力, 2022, 55(8): 96-103,112. |
[9] | 马文涛, 王金梅, 王永奇. 虚拟阻抗对不同电压等级逆变器并联系统的稳定性影响分析[J]. 中国电力, 2021, 54(9): 135-142,175. |
[10] | 彭春华, 熊鑫, 潘蕾, 黄志敏. 基于双重二阶广义积分虚拟阻抗的并联逆变器控制[J]. 中国电力, 2016, 49(9): 152-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||