中国电力 ›› 2024, Vol. 57 ›› Issue (2): 62-71.DOI: 10.11930/j.issn.1004-9649.202212059
收稿日期:
2022-12-24
出版日期:
2024-02-28
发布日期:
2024-02-28
作者简介:
沙兆义(1997—),男,硕士研究生,从事新能源电力系统保护与控制技术研究,E-mail:shazhaoyi927@126.com基金资助:
Zhaoyi SHA(), Congbo WANG(
), Rongrong ZHAN, Yue YU, Jianfeng WANG
Received:
2022-12-24
Online:
2024-02-28
Published:
2024-02-28
Supported by:
摘要:
电力电子换流器的引入改变了传统电网的故障特性,当交流线路发生故障后传统差动保护难以满足保护需求,易出现灵敏度降低甚至拒动风险。针对此问题,提出基于故障全电流多阶突变的交流线路保护原理。该保护以故障发生后线路两侧电流波形形变特征、突变特征的规律变化为基础,通过矩阵梯度算法对两侧全电流信号进行突变特征值的提取,即对两侧全电流信号的突变程度进行描述,进而构造纵联保护。相比于传统暂态量的快速保护无须提取固定频段特征,所提方法克服了在短路电流受控情况下利用周期分量算法无法精准提取固定暂态量的问题,相比于直接采用常规暂态信号的保护,具备较好的耐受过渡电阻以及噪声的能力。最后在PSCAD/EMTDC中搭建了换流器并网系统的仿真模型并校验了保护的有效性,所提保护故障识别时间小于7.5 ms,即使在经100 Ω的过渡电阻故障情况下,仍然具有较高的灵敏度,能较好地满足换流器并网线路对保护速动性与选择性的需求。
沙兆义, 王聪博, 詹荣荣, 余越, 王剑锋. 基于故障全电流多阶突变的换流器并网线路纵联保护[J]. 中国电力, 2024, 57(2): 62-71.
Zhaoyi SHA, Congbo WANG, Rongrong ZHAN, Yue YU, Jianfeng WANG. Pilot Protection for Converter-interconnected Lines Based on Multi-stage Mutation of Fault Current[J]. Electric Power, 2024, 57(2): 62-71.
设备 | 参数名称 | 数值 | ||
柔直换流器 | 直流电压/kV | ±500 | ||
桥臂电感/mH | 50 | |||
子模块电容/μF | 2800 | |||
电流环 PI 参数(p.u.) | 1/0.1 | |||
风电场 | 单机额定容量/MW | 5.2 | ||
额定电压/kV | 0.69 | |||
风机台数 | 100 |
表 1 仿真模型参数
Table 1 Parameters of the simulation model
设备 | 参数名称 | 数值 | ||
柔直换流器 | 直流电压/kV | ±500 | ||
桥臂电感/mH | 50 | |||
子模块电容/μF | 2800 | |||
电流环 PI 参数(p.u.) | 1/0.1 | |||
风电场 | 单机额定容量/MW | 5.2 | ||
额定电压/kV | 0.69 | |||
风机台数 | 100 |
故障位置 | 故障类型 | ΔG | ||||||
A相 | B相 | C相 | ||||||
F1区外 | AG | 0.5878 | 3.4342 | 2.3474 | ||||
BC | 0.6304 | 2.1735 | 2.6582 | |||||
BCG | 1.5740 | 2.9521 | 2.1455 | |||||
ABC | 0.5878 | 3.4342 | 2.3474 | |||||
F2区内 | AG | 5.5740×103 | 1.6476 | 0.4932 | ||||
BC | 0.8180 | 3.2020×103 | 3.4810×103 | |||||
BCG | 1.7634 | 4.9325×103 | 1.8515×103 | |||||
ABC | 8.8797×103 | 6.2737×103 | 3.8853×103 | |||||
F3区内 | AG | 2.5771×103 | 2.3948 | 0.3119 | ||||
BC | 0.5541 | 1.3077×103 | 1.5705×103 | |||||
BCG | 1.5569 | 2.3069×103 | 2.9217×103 | |||||
ABC | 4.4145×103 | 2.9040×103 | 2.7966×103 | |||||
F4区内 | AG | 1.5463×103 | 1.5109 | 0.3566 | ||||
BC | 0.0584 | 641.8243 | 900.5668 | |||||
BCG | 2.2905 | 1.3612×103 | 1.4244+03 | |||||
ABC | 2.8610×103 | 1.6972×103 | 1.0618×103 | |||||
F5区外 | AG | 0.2401 | 1.7405 | 0.2100 | ||||
BC | 0.2809 | 0.2709 | 0.0912 | |||||
BCG | 2.1649 | 0.7234 | 0.1436 | |||||
ABC | 0.6645 | 0.6574 | 0.1446 |
表 2 不同故障位置处保护性能
Table 2 Protection performance at different fault locations
故障位置 | 故障类型 | ΔG | ||||||
A相 | B相 | C相 | ||||||
F1区外 | AG | 0.5878 | 3.4342 | 2.3474 | ||||
BC | 0.6304 | 2.1735 | 2.6582 | |||||
BCG | 1.5740 | 2.9521 | 2.1455 | |||||
ABC | 0.5878 | 3.4342 | 2.3474 | |||||
F2区内 | AG | 5.5740×103 | 1.6476 | 0.4932 | ||||
BC | 0.8180 | 3.2020×103 | 3.4810×103 | |||||
BCG | 1.7634 | 4.9325×103 | 1.8515×103 | |||||
ABC | 8.8797×103 | 6.2737×103 | 3.8853×103 | |||||
F3区内 | AG | 2.5771×103 | 2.3948 | 0.3119 | ||||
BC | 0.5541 | 1.3077×103 | 1.5705×103 | |||||
BCG | 1.5569 | 2.3069×103 | 2.9217×103 | |||||
ABC | 4.4145×103 | 2.9040×103 | 2.7966×103 | |||||
F4区内 | AG | 1.5463×103 | 1.5109 | 0.3566 | ||||
BC | 0.0584 | 641.8243 | 900.5668 | |||||
BCG | 2.2905 | 1.3612×103 | 1.4244+03 | |||||
ABC | 2.8610×103 | 1.6972×103 | 1.0618×103 | |||||
F5区外 | AG | 0.2401 | 1.7405 | 0.2100 | ||||
BC | 0.2809 | 0.2709 | 0.0912 | |||||
BCG | 2.1649 | 0.7234 | 0.1436 | |||||
ABC | 0.6645 | 0.6574 | 0.1446 |
故障类型 | 过渡电阻/Ω | ΔG | ||||||
A相 | B相 | C相 | ||||||
AG | 25 | 1.0689×103 | 5.7855 | 2.6593 | ||||
50 | 698.2224 | 5.5317 | 0.2303 | |||||
75 | 459.5260 | 5.6361 | 0.2511 | |||||
100 | 342.6638 | 5.2735 | 0.2470 | |||||
BC | 25 | 0.9290 | 2.3774×103 | 2.2491×103 | ||||
50 | 2.3360 | 1.6418×103 | 1.4760×103 | |||||
75 | 2.2752 | 1.1418×103 | 974.1108 | |||||
100 | 2.2281 | 831.3782 | 667.8422 | |||||
BCG | 25 | 6.0489 | 1.1062×103 | 1.7774×103 | ||||
50 | 0.4272 | 593.7869 | 806.4858 | |||||
75 | 1.7772 | 352.1737 | 411.5794 | |||||
100 | 1.5537 | 216.1463 | 220.1909 |
表 3 不同过渡电阻情况下所提保护性能
Table 3 Performance of the proposed protection of different transition resistance
故障类型 | 过渡电阻/Ω | ΔG | ||||||
A相 | B相 | C相 | ||||||
AG | 25 | 1.0689×103 | 5.7855 | 2.6593 | ||||
50 | 698.2224 | 5.5317 | 0.2303 | |||||
75 | 459.5260 | 5.6361 | 0.2511 | |||||
100 | 342.6638 | 5.2735 | 0.2470 | |||||
BC | 25 | 0.9290 | 2.3774×103 | 2.2491×103 | ||||
50 | 2.3360 | 1.6418×103 | 1.4760×103 | |||||
75 | 2.2752 | 1.1418×103 | 974.1108 | |||||
100 | 2.2281 | 831.3782 | 667.8422 | |||||
BCG | 25 | 6.0489 | 1.1062×103 | 1.7774×103 | ||||
50 | 0.4272 | 593.7869 | 806.4858 | |||||
75 | 1.7772 | 352.1737 | 411.5794 | |||||
100 | 1.5537 | 216.1463 | 220.1909 |
故障类型 | 噪声/dB | ΔG | ||||||
A相 | B相 | C相 | ||||||
AG | 45 | 2.5769×103 | 6.6445 | 0.1031 | ||||
40 | 2.5804×103 | 2.4770 | 8.5704 | |||||
35 | 2.5733×103 | 0.7349 | 2.6960 | |||||
30 | 2.5776×103 | 18.6663 | 1.8569 | |||||
BC | 45 | 0.0535 | 1.3050×103 | 1.5695×103 | ||||
40 | 0.3340 | 1.3118×103 | 1.5691×103 | |||||
35 | 7.0556 | 1.2983×103 | 1.5736×103 | |||||
30 | 1.4690 | 1.3003×103 | 1.5659×103 | |||||
BCG | 45 | 1.5932 | 2.3067×103 | 1.3925×103 | ||||
40 | 4.5283 | 2.3048×103 | 1.3803×103 | |||||
35 | 0.8985 | 2.3005×103 | 1.3878×103 | |||||
30 | 22.1608 | 2.3208×103 | 1.3922×103 | |||||
ABC | 45 | 4.4075×103 | 2.9028×103 | 1.7937×103 | ||||
40 | 4.4193×103 | 2.8981×103 | 1.7826×103 | |||||
35 | 4.4107×103 | 2.8902×103 | 1.7848×103 | |||||
30 | 4.3762×103 | 2.9307×103 | 1.8843×103 |
表 4 不同噪声干扰下所提保护性能
Table 4 Performance of the proposed protection of different noise disturbances
故障类型 | 噪声/dB | ΔG | ||||||
A相 | B相 | C相 | ||||||
AG | 45 | 2.5769×103 | 6.6445 | 0.1031 | ||||
40 | 2.5804×103 | 2.4770 | 8.5704 | |||||
35 | 2.5733×103 | 0.7349 | 2.6960 | |||||
30 | 2.5776×103 | 18.6663 | 1.8569 | |||||
BC | 45 | 0.0535 | 1.3050×103 | 1.5695×103 | ||||
40 | 0.3340 | 1.3118×103 | 1.5691×103 | |||||
35 | 7.0556 | 1.2983×103 | 1.5736×103 | |||||
30 | 1.4690 | 1.3003×103 | 1.5659×103 | |||||
BCG | 45 | 1.5932 | 2.3067×103 | 1.3925×103 | ||||
40 | 4.5283 | 2.3048×103 | 1.3803×103 | |||||
35 | 0.8985 | 2.3005×103 | 1.3878×103 | |||||
30 | 22.1608 | 2.3208×103 | 1.3922×103 | |||||
ABC | 45 | 4.4075×103 | 2.9028×103 | 1.7937×103 | ||||
40 | 4.4193×103 | 2.8981×103 | 1.7826×103 | |||||
35 | 4.4107×103 | 2.8902×103 | 1.7848×103 | |||||
30 | 4.3762×103 | 2.9307×103 | 1.8843×103 |
故障类型 | 保护新原理动作时间 | 差动保护动作时间 | ||||||||||
A相 | B相 | C相 | A相 | B相 | C相 | |||||||
AG | 2.62 | 10.03 | ||||||||||
BC | 0.55 | 0.80 | 15.37 | 15.82 | ||||||||
BCG | 0.58 | 0.75 | 16.12 | 15.88 | ||||||||
ABC | 1.87 | 0.70 | 1.40 | 16.44 | 15.76 | 17.13 |
表 5 保护动作时间对比
Table 5 The comparison of protection action times 单位:ms
故障类型 | 保护新原理动作时间 | 差动保护动作时间 | ||||||||||
A相 | B相 | C相 | A相 | B相 | C相 | |||||||
AG | 2.62 | 10.03 | ||||||||||
BC | 0.55 | 0.80 | 15.37 | 15.82 | ||||||||
BCG | 0.58 | 0.75 | 16.12 | 15.88 | ||||||||
ABC | 1.87 | 0.70 | 1.40 | 16.44 | 15.76 | 17.13 |
1 | 丁怡婷. “十四五”现代能源体系这样建[N]. 人民日报, 2022-03-24(2). |
2 | 杜晓磊, 郭庆雷, 吴延坤, 等. 张北柔性直流电网示范工程控制系统架构及协调控制策略研究[J]. 电力系统保护与控制, 2020, 48 (9): 164- 173. |
DU Xiaolei, GUO Qinglei, WU Yankun, et al. Research on control system structure and coordination control strategy for Zhangbei Demonstration Project of MMC-HVDC Grid[J]. Power System Protection and Control, 2020, 48 (9): 164- 173. | |
3 | 李惠玲. 新型电力系统背景下西部送端直流电网及系统运行特性[J]. 中国电力, 2023, 56 (8): 166- 174. |
LI Huiling. Sending-terminal DC power grid in western China and its operation characteristics in the context of new power system[J]. Electric Power, 2023, 56 (8): 166- 174. | |
4 | 郑黎明, 贾科, 毕天姝, 等. 海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J]. 电力系统保护与控制, 2021, 49 (20): 20- 32. |
ZHENG Liming, JIA Ke, BI Tianshu, et al. AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J]. Power System Protection and Control, 2021, 49 (20): 20- 32. | |
5 | 郑涛, 吕文轩. 基于时序配合的柔直配电网后备保护与控制协同方案[J]. 电力系统自动化, 2022, 46 (2): 137- 145. |
ZHENG Tao, LYU Wenxuan. Time-sequential coordination based collaborative backup protection and control scheme for flexible DC distribution network[J]. Automation of Electric Power Systems, 2022, 46 (2): 137- 145. | |
6 | 田培涛, 陈勇, 吴庆范, 等. 基于柔直电网的暂态量保护方案及配合策略研究[J]. 电力系统保护与控制, 2019, 47 (14): 71- 78. |
TIAN Peitao, CHEN Yong, WU Qingfan, et al. Study on transient-based protection scheme and cooperation strategy based on flexible DC grid[J]. Power System Protection and Control, 2019, 47 (14): 71- 78. | |
7 | 苏见燊, 郭敬东, 金涛. 柔性直流电网中直流故障特性分析及线路故障重启策略[J]. 电工技术学报, 2019, 34 (S1): 352- 359. |
SU Jianshen, GUO Jingdong, JIN Tao. DC fault characteristics and line fault recovery strategy in flexible DC power network[J]. Transactions of China Electrotechnical Society, 2019, 34 (S1): 352- 359. | |
8 | 肖超, 韩伟, 李琼林, 等. 柔性直流输电系统交流侧线路继电保护适应性研究[J]. 智慧电力, 2020, 48 (4): 1- 8. |
XIAO Chao, HAN Wei, LI Qionglin, et al. Adaptability of MMC-HVDC system on relay protection of AC transmission lines[J]. Smart Power, 2020, 48 (4): 1- 8. | |
9 | 李彦宾, 贾科, 毕天姝, 等. 电流差动保护在逆变型新能源场站送出线路中的适应性分析[J]. 电力系统自动化, 2017, 41 (12): 100- 105. |
LI Yanbin, JIA Ke, BI Tianshu, et al. Adaptability analysis of current differential protection of outgoing transmission line emanating from inverter-interfaced renewable energy power plants[J]. Automation of Electric Power Systems, 2017, 41 (12): 100- 105. | |
10 | 何维轩, 樊征臻, 霍姚彤, 等. 基于交叉熵的海上风电经柔性低频送出系统海缆纵联保护[J]. 中国电力, 2023, 56 (11): 38- 48. |
HE Weixuan, FAN Zhengzhen, HUO Yaogang, et al. Pilot protection scheme of submarine cable in flexible low-frequency transmission system based on cross entropy algorithm[J]. Electric Power, 2023, 56 (11): 38- 48. | |
11 | 李泽文, 贺子凝, 郭田田, 等. 基于时频矩阵相似度的输电线路暂态保护方法[J]. 电力系统自动化, 2019, 43 (5): 121- 128. |
LI Zewen, HE Zining, GUO Tiantian, et al. Transient protection method for transmission lines based on similarity of time-frequency matrix[J]. Automation of Electric Power Systems, 2019, 43 (5): 121- 128. | |
12 | 张杰, 李超, 李更达, 等. 基于小波分析的特高压直流输电线路单端电压暂态保护[J]. 电气应用, 2019, 38 (7): 12- 19. |
ZHANG Jie, LI Chao, LI Gengda, et al. A single-ended transient voltage protection approach of UHVDC transmission line based on wavelet analysis[J]. Electrotechnical Application, 2019, 38 (7): 12- 19. | |
13 | MIRZAHOSSEINI R, IRAVANI R, ZHANG Y. An FPGA-based digital real-time simulator for hardware-in-the-loop testing of traveling-wave relays[J]. IEEE Transactions on Power Delivery, 2020, 35 (6): 2621- 2629. |
14 | 邓丰, 李欣然, 曾祥君, 等. 基于波形唯一和时-频特征匹配的单端行波保护和故障定位方法[J]. 中国电机工程学报, 2018, 38 (5): 1475- 1487. |
DENG Feng, LI Xinran, ZENG Xiangjun, et al. Research on single-end traveling wave based protection and fault location method based on waveform uniqueness and feature matching in the time and frequency domain[J]. Proceedings of the CSEE, 2018, 38 (5): 1475- 1487. | |
15 | 王晨清, 宋国兵, 徐海洋, 等. 适用于风电接入系统的相电压暂态量时域选相新原理[J]. 电网技术, 2015, 39 (8): 2320- 2326. |
WANG Chenqing, SONG Guobing, XU Haiyang, et al. Novel principle of phase selection for wind power integration based on fault transient voltage in time-domain[J]. Power System Technology, 2015, 39 (8): 2320- 2326. | |
16 | 侯俊杰, 樊艳芳, 晁勤, 等. 基于时域全量故障模型相关性判别的集群风电送出线纵联保护[J]. 电力自动化设备, 2018, 38 (7): 89- 96. |
HOU Junjie, FAN Yanfang, CHAO Qin, et al. Cluster wind power outgoing line pilot protection scheme based on time-domain full-frequency fault model correlation identification[J]. Electric Power Automation Equipment, 2018, 38 (7): 89- 96. | |
17 | DANTAS D T, PELLINI E L, MANASSERO G. Time-domain differential protection method applied to transmission lines[J]. IEEE Transactions on Power Delivery, 2018, 33 (6): 2634- 2642. |
18 | 郑黎明, 贾科, 侯来运, 等. 基于奇异值分解的海上风电接入柔直系统的交流线路保护[J]. 中国电机工程学报, 2020, 40 (S1): 75- 83. |
ZHENG Liming, JIA Ke, HOU Laiyun, et al. Singular value decomposition based protection for AC transmission lines of VSC-HVDC system with offshore wind farms[J]. Proceedings of the CSEE, 2020, 40 (S1): 75- 83. | |
19 | 陈蕊. 新能源柔直送出系统故障特征及保护配置方案研究[D]. 北京: 华北电力大学, 2019. |
CHEN Rui. Study on fault characteristics and protection configuration scheme of MMC-HVDC connected renewable power system[D]. Beijing: North China Electric Power University, 2019. | |
20 | 方万良, 李建华, 王建学. 电力系统暂态分析[M]. 4版. 北京: 中国电力出版社, 2017. |
21 | 吴沛锋, 张国云, 孔令号. 基于全波电流关联性的线路差动保护算法[J]. 电网技术, 2019, 43 (7): 2584- 2591. |
WU Peifeng, ZHANG Guoyun, KONG Linghao. A new line differential protection principle based on correlation of full wave current data[J]. Power System Technology, 2019, 43 (7): 2584- 2591. | |
22 | 徐永干, 姜杰, 唐昆明, 等. 基于Hankel矩阵和奇异值分解的局部放电窄带干扰抑制方法[J]. 电网技术, 2020, 44 (7): 2762- 2769. |
XU Yonggan, JIANG Jie, TANG Kunming, et al. A method of suppressing narrow-band interference in partial discharge based on Hankel matrix and singular value decomposition[J]. Power System Technology, 2020, 44 (7): 2762- 2769. | |
23 | 宾子君, 袁宇波, 许瑨, 等. 基于故障录波的海上风电经柔直并网系统阻抗分析方法[J]. 电网技术, 2022, 46 (8): 2920- 2928. |
BIN Zijun, YUAN Yubo, XU Jin, et al. Impedance analysis of offshore wind farms with VSC-HVDC systems based on fault record data[J]. Power System Technology, 2022, 46 (8): 2920- 2928. | |
24 | 叶昊亮. 海上风电场经交流海缆并网的电磁暂态建模与无功优化研究[D]. 杭州: 浙江大学, 2022. |
YE Haoliang. Electromagnetic transient model and reactive power optimization of grid-connected offshore wind farms via AC submarine cables[D]. Hangzhou: Zhejiang University, 2022. | |
25 | 张帆, 尹聪琦, 袁豪, 等. 风电-柔直系统次同步振荡的耦合阻抗模型分析[J]. 南方电网技术, 2022, 16 (3): 24- 31. |
ZHANG Fan, YIN Congqi, YUAN Hao, et al. Impedance coupling model based sub-synchronous oscillation analysis of wind farms connected to VSC-HVDC transmission system[J]. Southern Power System Technology, 2022, 16 (3): 24- 31. |
[1] | 沈舒仪, 王国腾, 但扬清, 孙飞飞, 黄莹, 徐政. 频率偏差与电压刚度约束下多馈入直流优化调度方法[J]. 中国电力, 2025, 58(3): 132-141. |
[2] | 辛业春, 李尚轩, 王延旭, 朱益华, 余佳微, 常东旭. 基于直流电流反馈的MMC-HVDC系统的中高频振荡抑制策略[J]. 中国电力, 2025, 58(1): 39-49. |
[3] | 曹宇, 胡鹏飞, 蔡婉琪, 王曦, 江道灼, 梁一桥. 基于MMC的超级电容与蓄电池混合储能系统及其混合同步控制策略[J]. 中国电力, 2024, 57(6): 78-89. |
[4] | 李铁成, 范辉, 张卫明, 王献志, 张艺宏, 戴志辉. 基于5G通信的有源配电网新能源送出线路纵联保护[J]. 中国电力, 2024, 57(11): 139-150. |
[5] | 刘道兵, 鲍妙生, 李世春, 郭汉琮, 郭营营, 齐越. 不平衡电网下MMC的PCHD模型无源滑模控制策略[J]. 中国电力, 2023, 56(8): 109-116. |
[6] | 徐文哲, 张哲任, 徐政. 适用于大规模纯新能源发电基地送出的混合式直流输电系统[J]. 中国电力, 2023, 56(4): 17-27. |
[7] | 杨舒婷, 陈新, 黄通, 魏麒璇. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56(4): 38-45. |
[8] | 何维轩, 樊征臻, 霍姚彤, 梁营玉. 基于交叉熵的海上风电经柔性低频送出系统海缆纵联保护[J]. 中国电力, 2023, 56(11): 38-48. |
[9] | 郭汉臣, 王琛, 范莹, 王毅, 田艳军, 谭开东. 可改善中压MMC谐波特性的无差拍控制策略[J]. 中国电力, 2022, 55(8): 165-170. |
[10] | 李奇南, 夏勇军, 张晓林, 孙宝奎, 孙华东, 张帆, 李兰芳, 杨岳峰, 韩情涛. 渝鄂柔性直流输电系统中高频振荡影响因素及抑制策略[J]. 中国电力, 2022, 55(7): 11-21. |
[11] | 李奇南, 夏勇军, 张晓林, 孙宝奎, 孙华东, 张帆, 李兰芳, 杨岳峰, 韩情涛. 计及电压测量特性的MMC中高频阻抗建模及稳定性分析[J]. 中国电力, 2022, 55(5): 84-93. |
[12] | 席嫣娜, 李笑彤, 李子明, 魏应冬, 李笑倩, 王方敏, 李伟, 李伟瑞. 用于城轨直流牵引系统的混合型MMC全桥子模块比例设计方法[J]. 中国电力, 2022, 55(4): 54-62. |
[13] | 徐雷, 夏向阳, 敬华兵, 刘奕玹, 贺烨丹, 易海淦. 基于勒让德多项式的MMC自适应反步控制策略[J]. 中国电力, 2022, 55(3): 18-27. |
[14] | 游广增, 宋钊, 贵子航, 李玲芳, 朱欣春, 舒德兀. 基于SoC系统的模块化多电平换流器全电磁暂态实时仿真[J]. 中国电力, 2022, 55(2): 159-165,189. |
[15] | 贺烨丹, 夏向阳, 尹旭, 邓文华, 王灿, 熊富强, 周晗靓. 不对称电压暂降下最大功率输出的MMC协调控制策略[J]. 中国电力, 2022, 55(12): 160-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||