中国电力 ›› 2024, Vol. 57 ›› Issue (6): 78-89.DOI: 10.11930/j.issn.1004-9649.202311047
曹宇1(), 胡鹏飞1(
), 蔡婉琪2(
), 王曦3(
), 江道灼1(
), 梁一桥4
收稿日期:
2023-11-10
接受日期:
2024-04-16
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
曹宇(1998—),男,硕士研究生,从事新能源并网控制策略研究,E-mail:22110017@zju.edu.cn基金资助:
Yu CAO1(), Pengfei HU1(
), Wanqi CAI2(
), Xi WANG3(
), Daozhuo JIANG1(
), Yiqiao LIANG4
Received:
2023-11-10
Accepted:
2024-04-16
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
为满足储能系统提供惯量和一次调频支撑功能需要对多类型储能介质集中配置和优化调控的需求,针对基于模块化多电平换流器(modular multilevel converter,MMC)的新型混合储能系统(hybrid energy storage system,HESS)MMC-HESS,提出了混合同步控制(hybrid synchronous control,HSC)整体策略。MMC-HESS采用模块化设计,将超级电容和蓄电池分别安置在高压直流母线侧和子模块内,具备高功率密度和高能量密度的优势。阐述了混合储能系统的拓扑结构和工作原理并采用混合同步控制策略提供系统惯量和一次调频功能及故障限流时的同步能力和孤岛并网切换功能,采用滤波器实现储能功率分配,采用荷电状态(state of charge,SOC)均衡控制实现蓄电池能量均衡。最后,基于硬件在环实验平台,验证了所提拓扑结构与控制策略的可行性和有效性。实验结果表明:所提混合储能系统及其控制策略具备惯量与频率支撑能力,在故障限流、正常并网、孤岛运行之间可灵活切换,能够有效发挥混合储能的综合优势,在中压配电网中具有良好的应用前景。
曹宇, 胡鹏飞, 蔡婉琪, 王曦, 江道灼, 梁一桥. 基于MMC的超级电容与蓄电池混合储能系统及其混合同步控制策略[J]. 中国电力, 2024, 57(6): 78-89.
Yu CAO, Pengfei HU, Wanqi CAI, Xi WANG, Daozhuo JIANG, Yiqiao LIANG. MMC Based Super Capacitor and Battery Hybrid Energy Storage System and Hybrid Synchronous Control Strategy[J]. Electric Power, 2024, 57(6): 78-89.
结构 | 参数 | 标识 | 设置 | |||||||
网侧 | 电压等级/kV | Vbase | 10 | |||||||
额定频率/Hz | f0 | 50 | ||||||||
额定容量/(MV·A) | Sbase | 10 | ||||||||
线路电感(p.u.) | Ls | 0.2 | ||||||||
线路电阻(p.u.) | Rs | 0.002 | ||||||||
LC滤波器 | 串联电感(p.u.) | Lf | 0.2 | |||||||
电感寄生电阻(p.u.) | Rf | 0.02 | ||||||||
并联电容(p.u.) | Cf | 0.02 | ||||||||
电容寄生电阻(p.u.) | RCf | 0.1 | ||||||||
桥臂结构 | 单个桥臂子模块级联数 | N | 8 | |||||||
桥臂电感/mH | L0 | 12 | ||||||||
桥臂电阻/Ω | R0 | 0.1 | ||||||||
子模块内部并联电容/mF | C0 | 8.4 | ||||||||
蓄电池 | 单个额定电压/kV | VBr | 2.5 | |||||||
单个额定容量/(A·h) | QBr | 20 | ||||||||
SOC初始值/% | A相 | 上桥臂 | SOCpa | 45 | ||||||
下桥臂 | SOCna | 47 | ||||||||
B相 | 上桥臂 | SOCpb | 51 | |||||||
下桥臂 | SOCnb | 49 | ||||||||
C相 | 上桥臂 | SOCpc | 53 | |||||||
下桥臂 | SOCnc | 55 | ||||||||
直流侧 超级电容 | 串联电容总值/F | CSC | 1 | |||||||
工作电压上边界/kV | USCmax | 11 | ||||||||
工作电压下边界/kV | USCmin | 1 | ||||||||
HSC 功率环 | 虚拟惯量系数(p.u.) | J | 2.5 | |||||||
阻尼系数(p.u.) | Dp | 100 | ||||||||
PLL分量比例系数(p.u.) | Kp | 10 | ||||||||
电压内环 | 比例系数(p.u.) | Kpv | 0.5 | |||||||
积分系数(p.u.) | Kiv | 500 | ||||||||
电流内环 | 比例系数(p.u.) | Kpi | 1 | |||||||
积分系数(p.u.) | Kii | 200 | ||||||||
SC功率 | 高频分量补偿系数(p.u.) | KH | 5 | |||||||
低频分量补偿系数(p.u.) | KL0 | 0.5 | ||||||||
直流电流环 | 比例系数(p.u.) | KpDC | 0.5 | |||||||
积分系数(p.u.) | KiDC | 100 | ||||||||
SOC均衡 | 相间SOC均衡系数(p.u.) | Kph | 50 | |||||||
上下桥臂SOC均衡系数(p.u.) | Karm | 40 | ||||||||
环流直流分量限幅(p.u.) | IDCcir_lim | 3 | ||||||||
环流交流分量限幅(p.u.) | IACcir_lim | 2 | ||||||||
排序优先级SOC死区/% | DB | 0.1 |
表 1 混合同步控制的MMC混合储能系统参数
Table 1 HSC controlled MMC-HESS parameters
结构 | 参数 | 标识 | 设置 | |||||||
网侧 | 电压等级/kV | Vbase | 10 | |||||||
额定频率/Hz | f0 | 50 | ||||||||
额定容量/(MV·A) | Sbase | 10 | ||||||||
线路电感(p.u.) | Ls | 0.2 | ||||||||
线路电阻(p.u.) | Rs | 0.002 | ||||||||
LC滤波器 | 串联电感(p.u.) | Lf | 0.2 | |||||||
电感寄生电阻(p.u.) | Rf | 0.02 | ||||||||
并联电容(p.u.) | Cf | 0.02 | ||||||||
电容寄生电阻(p.u.) | RCf | 0.1 | ||||||||
桥臂结构 | 单个桥臂子模块级联数 | N | 8 | |||||||
桥臂电感/mH | L0 | 12 | ||||||||
桥臂电阻/Ω | R0 | 0.1 | ||||||||
子模块内部并联电容/mF | C0 | 8.4 | ||||||||
蓄电池 | 单个额定电压/kV | VBr | 2.5 | |||||||
单个额定容量/(A·h) | QBr | 20 | ||||||||
SOC初始值/% | A相 | 上桥臂 | SOCpa | 45 | ||||||
下桥臂 | SOCna | 47 | ||||||||
B相 | 上桥臂 | SOCpb | 51 | |||||||
下桥臂 | SOCnb | 49 | ||||||||
C相 | 上桥臂 | SOCpc | 53 | |||||||
下桥臂 | SOCnc | 55 | ||||||||
直流侧 超级电容 | 串联电容总值/F | CSC | 1 | |||||||
工作电压上边界/kV | USCmax | 11 | ||||||||
工作电压下边界/kV | USCmin | 1 | ||||||||
HSC 功率环 | 虚拟惯量系数(p.u.) | J | 2.5 | |||||||
阻尼系数(p.u.) | Dp | 100 | ||||||||
PLL分量比例系数(p.u.) | Kp | 10 | ||||||||
电压内环 | 比例系数(p.u.) | Kpv | 0.5 | |||||||
积分系数(p.u.) | Kiv | 500 | ||||||||
电流内环 | 比例系数(p.u.) | Kpi | 1 | |||||||
积分系数(p.u.) | Kii | 200 | ||||||||
SC功率 | 高频分量补偿系数(p.u.) | KH | 5 | |||||||
低频分量补偿系数(p.u.) | KL0 | 0.5 | ||||||||
直流电流环 | 比例系数(p.u.) | KpDC | 0.5 | |||||||
积分系数(p.u.) | KiDC | 100 | ||||||||
SOC均衡 | 相间SOC均衡系数(p.u.) | Kph | 50 | |||||||
上下桥臂SOC均衡系数(p.u.) | Karm | 40 | ||||||||
环流直流分量限幅(p.u.) | IDCcir_lim | 3 | ||||||||
环流交流分量限幅(p.u.) | IACcir_lim | 2 | ||||||||
排序优先级SOC死区/% | DB | 0.1 |
1 | 谢小荣, 贺静波, 毛航银, 等. “双高” 电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41 (2): 461- 475. |
XIE Xiaorong, HE Jingbo, MAO Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41 (2): 461- 475. | |
2 | 钱国明, 孟杰, 朱海东, 等. 基于调频服务的新型光-储电站容量规划及运行策略[J]. 中国电力, 2023, 56 (6): 132- 138, 147. |
QIAN Guoming, MENG Jie, ZHU Haidong, et al. Capacity planning and operation strategy of new PV-storage power station based on frequency modulation service[J]. Electric Power, 2023, 56 (6): 132- 138, 147. | |
3 | 张嘉诚, 夏向阳, 邓子豪, 等. 储能电站安全参与电网一次调频的优化控制策略[J]. 中国电力, 2022, 55 (2): 19- 27. |
ZHANG Jiacheng, XIA Xiangyang, DENG Zihao, et al. Optimal control strategy for energy storage power station in primary frequency regulation of power grid[J]. Electric Power, 2022, 55 (2): 19- 27. | |
4 | 赵昕昕, 夏向阳, 曾小勇, 等. 基于混合粒子群优化的混合储能直流电源系统[J]. 中国电力, 2019, 52 (5): 104- 112. |
ZHAO Xinxin, XIA Xiangyang, ZENG Xiaoyong, et al. Hybrid energy storage DC power supply system based on PSO-NM[J]. Electric Power, 2019, 52 (5): 104- 112. | |
5 | 柴秀慧, 张纯江, 柴建国, 等. 蓄电池-超级电容混合储能系统性能优化[J]. 电工电能新技术, 2019, 38 (9): 33- 41. |
CHAI Xiuhui, ZHANG Chunjiang, CHAI Jianguo, et al. Performance optimization of battery-ultracapacitor hybrid energy storage system[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38 (9): 33- 41. | |
6 | 张国驹, 唐西胜, 齐智平. 超级电容器与蓄电池混合储能系统在微网中的应用[J]. 电力系统自动化, 2010, 34 (12): 85- 89. |
ZHANG Guoju, TANG Xisheng, QI Zhiping. Application of hybrid energy storage system of super-capacitors and batteries in a microgrid[J]. Automation of Electric Power Systems, 2010, 34 (12): 85- 89. | |
7 | 李楠, 张磊, 马士聪, 等. 基于模块化多电平换流器的电池储能系统控制策略[J]. 电力系统自动化, 2017, 41 (9): 144- 150. |
LI Nan, ZHANG Lei, MA Shicong, et al. Control strategy for battery energy storage system based on modular multilevel converters[J]. Automation of Electric Power Systems, 2017, 41 (9): 144- 150. | |
8 | QIU S P, SHI B. An enhanced battery interface of MMC-BESS[C]//2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Xi'an, China. IEEE, 2019: 434–439. |
9 |
李善颖, 吴涛, 任彬, 等. 基于模块化多电平变换器的储能系统综述[J]. 电力系统保护与控制, 2015, 43 (16): 139- 146.
DOI |
LI Shanying, WU Tao, REN Bin, et al. Review of energy storage system based on modular multilevel converter[J]. Power System Protection and Control, 2015, 43 (16): 139- 146.
DOI |
|
10 | 郑飞洋. 基于模块化多电平的电池储能系统能量管理控制研究[D]. 秦皇岛: 燕山大学, 2021. |
ZHENG Feiyang. Research on energy management control of battery energy storage system based on modular multilevel converter[D]. Qinhuangdao: Yanshan University, 2021. | |
11 | GUO F, YE Y Z, SHARMA R. A modular multilevel converter based battery-ultracapacitor hybrid energy storage system for photovoltaic applications[C]//2015 Clemson University Power Systems Conference (PSC). Clemson, SC, USA. IEEE, 2015: 1–6. |
12 | LEI Z, TANG Y, YANG S F, et al. A modular multilevel converter-based grid-tied battery-supercapacitor hybrid energy storage system with decoupled power control[C]//2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia). Hefei, China. IEEE, 2016: 2964–2971. |
13 | 孙佳航, 王小华, 黄景光, 等. 基于MPC-VSG的孤岛微电网频率和电压动态稳定控制策略[J]. 中国电力, 2023, 56 (6): 51- 60, 81. |
SUN Jiahang, WANG Xiaohua, HUANG Jingguang, et al. MPC-VSG based control strategy for dynamic stability of frequency and voltage in islanded microgrid[J]. Electric Power, 2023, 56 (6): 51- 60, 81. | |
14 | 盛师贤, 周鑫, 王德林, 等. 虚拟同步风电场协同光伏电站附加阻尼控制方法[J]. 中国电力, 2022, 55 (3): 177- 186. |
SHENG Shixian, ZHOU Xin, WANG Delin, et al. Additional damping cooperative control method of virtual synchronous wind farm and photovoltaic power stations[J]. Electric Power, 2022, 55 (3): 177- 186. | |
15 | 李文启, 徐箭, 刘韶林, 等. 基于模块化多电平换流器的虚拟同步机设计[J]. 电气应用, 2020, 39 (8): 71- 77. |
LI Wenqi, XU Jian, LIU Shaolin, et al. Design of virtual synchronous generator based on modular multilevel converter[J]. Electrotechnical Application, 2020, 39 (8): 71- 77. | |
16 | 卢绍群. 基于虚拟同步机的MMC互联变换器控制策略研究[D]. 湘潭: 湘潭大学, 2020. |
LU Shaoqun. Research on control strategy of MMC interconnected converter based on virtual synchronous machine[D]. Xiangtan: Xiangtan University, 2020. | |
17 | JI K, PANG H, LIU S, et al. Impedance analysis considering unstable subsystem poles for MMC-HVDC-based wind farm integration system[J]. CSEE Journal of Power and Energy Systems, 2022, 8 (2): 634- 639. |
18 | 杨舒婷, 陈新, 黄通, 等. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56 (4): 38- 45. |
YANG Shuting, CHEN Xin, HUANG Tong, et al. Impedance modeling method of offshore wind farm integration through MMC-HVDC with MMC circulation control[J]. Electric Power, 2023, 56 (4): 38- 45. | |
19 | 董婉婉. MMC半桥串联结构微电网系统的并离网切换控制研究[D]. 兰州: 兰州理工大学, 2022. |
DONG Wanwan. Research on grid-connected and islanded switching control of MMC half-bridge series structure microgrid system[D]. Lanzhou: Lanzhou University of Technology, 2022. | |
20 | 蔡婉琪. 基于模块化多电平换流器的混合储能系统研究[D]. 杭州: 浙江大学, 2021. |
CAI Wanqi. Study on hybrid energy storage system based on modular multilevel converter[D]. Hangzhou: Zhejiang University, 2021. | |
21 |
HU P F, TEODORESCU R, GUERRERO J M. Negative-sequence second-order circulating current injection for hybrid MMC under over-modulation conditions[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8 (3): 2508- 2519.
DOI |
22 | LIU D Q, WANG G Z, OU Z J, et al. A control strategy of MMC battery energy storage system based on arm current control[C]//2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia). Niigata, Japan. IEEE, 2018: 1376–1380. |
23 | 郭龙, 梁晖, 张维戈. 基于模块化多电平变流器的电池储能系统荷电状态均衡控制策略[J]. 电网技术, 2017, 41 (8): 2688- 2697. |
GUO Long, LIANG Hui, ZHANG Weige. State-of-charge balancing control strategy for battery energy storage system based on modular multi-level converter[J]. Power System Technology, 2017, 41 (8): 2688- 2697. | |
24 |
HU P F, TEODORESCU R, WANG S D, et al. A currentless sorting and selection-based capacitor-voltage-balancing method for modular multilevel converters[J]. IEEE Transactions on Power Electronics, 2019, 34 (2): 1022- 1025.
DOI |
25 | 陈亚爱, 林演康, 王赛, 等. 基于滤波分配法的混合储能优化控制策略[J]. 电工技术学报, 2020, 35 (19): 4009- 4018. |
CHEN Yaai, LIN Yankang, WANG Sai, et al. Optimal control strategy of hybrid energy storage based on filter allocation method[J]. Transactions of China Electrotechnical Society, 2020, 35 (19): 4009- 4018. | |
26 | 姜卫同, 胡鹏飞, 尹瑞, 等. 基于虚拟同步机的变流器暂态稳定分析及混合同步控制策略[J]. 电力系统自动化, 2021, 45 (22): 124- 133. |
JIANG Weitong, HU Pengfei, YIN Rui, et al. Transient stability analysis and hybrid synchronization control strategy of converter based on virtual synchronous generator[J]. Automation of Electric Power Systems, 2021, 45 (22): 124- 133. |
[1] | 辛业春, 李尚轩, 王延旭, 朱益华, 余佳微, 常东旭. 基于直流电流反馈的MMC-HVDC系统的中高频振荡抑制策略[J]. 中国电力, 2025, 58(1): 39-49. |
[2] | 孙志媛, 彭博雅, 孙艳. 考虑多能互补的电力电量平衡优化调度策略[J]. 中国电力, 2024, 57(1): 115-122. |
[3] | 刘道兵, 鲍妙生, 李世春, 郭汉琮, 郭营营, 齐越. 不平衡电网下MMC的PCHD模型无源滑模控制策略[J]. 中国电力, 2023, 56(8): 109-116. |
[4] | 徐文哲, 张哲任, 徐政. 适用于大规模纯新能源发电基地送出的混合式直流输电系统[J]. 中国电力, 2023, 56(4): 17-27. |
[5] | 杨舒婷, 陈新, 黄通, 魏麒璇. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56(4): 38-45. |
[6] | 郭汉臣, 王琛, 范莹, 王毅, 田艳军, 谭开东. 可改善中压MMC谐波特性的无差拍控制策略[J]. 中国电力, 2022, 55(8): 165-170. |
[7] | 李奇南, 夏勇军, 张晓林, 孙宝奎, 孙华东, 张帆, 李兰芳, 杨岳峰, 韩情涛. 渝鄂柔性直流输电系统中高频振荡影响因素及抑制策略[J]. 中国电力, 2022, 55(7): 11-21. |
[8] | 贺彦强, 王英, 陈小强, 陈剑箫. 计及特征次谐波治理的铁路网侧储能系统控制策略[J]. 中国电力, 2022, 55(7): 33-41. |
[9] | 徐衍会, 徐宜佳. 平抑风电波动的混合储能容量配置及控制策略[J]. 中国电力, 2022, 55(6): 186-193. |
[10] | 李奇南, 夏勇军, 张晓林, 孙宝奎, 孙华东, 张帆, 李兰芳, 杨岳峰, 韩情涛. 计及电压测量特性的MMC中高频阻抗建模及稳定性分析[J]. 中国电力, 2022, 55(5): 84-93. |
[11] | 席嫣娜, 李笑彤, 李子明, 魏应冬, 李笑倩, 王方敏, 李伟, 李伟瑞. 用于城轨直流牵引系统的混合型MMC全桥子模块比例设计方法[J]. 中国电力, 2022, 55(4): 54-62. |
[12] | 徐雷, 夏向阳, 敬华兵, 刘奕玹, 贺烨丹, 易海淦. 基于勒让德多项式的MMC自适应反步控制策略[J]. 中国电力, 2022, 55(3): 18-27. |
[13] | 游广增, 宋钊, 贵子航, 李玲芳, 朱欣春, 舒德兀. 基于SoC系统的模块化多电平换流器全电磁暂态实时仿真[J]. 中国电力, 2022, 55(2): 159-165,189. |
[14] | 贺烨丹, 夏向阳, 尹旭, 邓文华, 王灿, 熊富强, 周晗靓. 不对称电压暂降下最大功率输出的MMC协调控制策略[J]. 中国电力, 2022, 55(12): 160-167. |
[15] | 袁敏, 茆美琴, 程德健, 张榴晨. 主电路参数对MMC-HVDC电网直流短路故障电流综合影响分析[J]. 中国电力, 2021, 54(10): 11-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||