中国电力 ›› 2024, Vol. 57 ›› Issue (6): 78-89.DOI: 10.11930/j.issn.1004-9649.202311047

• 新型电力系统储能规划与运行关键技术 • 上一篇    下一篇

基于MMC的超级电容与蓄电池混合储能系统及其混合同步控制策略

曹宇1(), 胡鹏飞1(), 蔡婉琪2(), 王曦3(), 江道灼1(), 梁一桥4   

  1. 1. 浙江大学 电气工程学院,浙江 杭州 310027
    2. 国网浙江省电力有限公司培训中心,浙江 杭州 310000
    3. 国网四川省电力公司电力科学研究院,四川 成都 610065
    4. 浙江大学城市学院 信息与电气工程学院,浙江 杭州 310000
  • 收稿日期:2023-11-10 接受日期:2024-04-16 出版日期:2024-06-28 发布日期:2024-06-25
  • 作者简介:曹宇(1998—),男,硕士研究生,从事新能源并网控制策略研究,E-mail:22110017@zju.edu.cn
    胡鹏飞(1988—),男,通信作者,研究员,博士生导师,从事柔性交直流输电系统、新能源并网及控制研究,E-mail:hpf@zju.edu.cn
    江道灼(1960—),男,教授,博士生导师,从事电力电子技术在电力系统的应用研究,E-mail:dzjiang@zju.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(面向中压主动配电网的新型混合储能系统及其模型预测控制研究,52007167);浙江省自然科学基金资助项目(基于MMC的新型混合储能系统及其控制策略研究,LQ21E070004)。

MMC Based Super Capacitor and Battery Hybrid Energy Storage System and Hybrid Synchronous Control Strategy

Yu CAO1(), Pengfei HU1(), Wanqi CAI2(), Xi WANG3(), Daozhuo JIANG1(), Yiqiao LIANG4   

  1. 1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
    2. State Grid Zhejiang Electric Power Co., Ltd. Training Center, Hangzhou 310000, China
    3. State Grid Sichuan Electric Power Co., Ltd. Electric Power Research Institute, Chengdu 610065, China
    4. School of Information & Electrical Engineering, Zhejiang University City College, Hangzhou 310000, China
  • Received:2023-11-10 Accepted:2024-04-16 Online:2024-06-28 Published:2024-06-25
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Novel Hybrid Energy Storage System and Its Model Predictive Control Method for Medium-Voltage Active Distribution Network, No.52007167) and Natural Science Foundation of Zhejiang Province (Modular Multilevel Converter Based Novel Hybrid Energy Storage System and Its Control Strategy, No.LQ21E070004).

摘要:

为满足储能系统提供惯量和一次调频支撑功能需要对多类型储能介质集中配置和优化调控的需求,针对基于模块化多电平换流器(modular multilevel converter,MMC)的新型混合储能系统(hybrid energy storage system,HESS)MMC-HESS,提出了混合同步控制(hybrid synchronous control,HSC)整体策略。MMC-HESS采用模块化设计,将超级电容和蓄电池分别安置在高压直流母线侧和子模块内,具备高功率密度和高能量密度的优势。阐述了混合储能系统的拓扑结构和工作原理并采用混合同步控制策略提供系统惯量和一次调频功能及故障限流时的同步能力和孤岛并网切换功能,采用滤波器实现储能功率分配,采用荷电状态(state of charge,SOC)均衡控制实现蓄电池能量均衡。最后,基于硬件在环实验平台,验证了所提拓扑结构与控制策略的可行性和有效性。实验结果表明:所提混合储能系统及其控制策略具备惯量与频率支撑能力,在故障限流、正常并网、孤岛运行之间可灵活切换,能够有效发挥混合储能的综合优势,在中压配电网中具有良好的应用前景。

关键词: 模块化多电平换流器, 超级电容, 蓄电池, 混合储能系统, 混合同步控制, 荷电状态均衡

Abstract:

To meet the requirements of energy storage system to provide inertia and primary frequency regulation for centralized configuration and optimal control of multiple energy storage media, an overall hybrid synchronous control (HSC) strategy is proposed for modular multilevel converter (MMC) based hybrid energy storage system (HESS). The modular design method is adopted for MMC-HESS, where the super capacitors (SC) and batteries are placed in the DC bus side and in the sub-module (SM) respectively, which has advantages of high power density and high energy density. The topology and working principle of HESS are analyzed, and the HSC strategy is used to provide system inertia and primary frequency regulation, as well as the synchronization capability and isolation control function for fault current limiting. The filter is employed for distributing power of energy storage, and the state of charge (SOC) balancing control is used for battery energy regulation. Finally, based on the hardware-in-the-loop experimentation platform, the MMC-HESS topology and control strategy proposed in this paper are verified. The experimental results indicate that the proposed HSC-MMC-HESS is able to provide inertia and frequency support capability, and switch flexibly between fault current-limiting, normal grid-connection and island operation, giving a full play to the comprehensive advantages of hybrid energy storage. The application of HSC-MMC-HESS has good prospects in medium-voltage distribution network.

Key words: modular multilevel converter, super capacitor, battery, hybrid energy storage system, hybrid synchronous control, state of charge balancing