[1] 徐政. 柔性直流输电系统[M]. 北京: 机械工业出版社, 2013. [2] MISHRA S, PALU I, MADICHETTY S, et al. Modelling of wind energy-based microgrid system implementing MMC[J]. International Journal of Energy Research, 2016, 40(7): 952–962. [3] XIA X Y, ZHOU Y, FU C H, et al. Research on high voltage DC transmission system optimal control based on MMC[J]. International Journal of Electrical Power & Energy Systems, 2016, 82: 207–212. [4] 夏向阳, 周云, 帅智康. 高压直流输电系统中模块化多电平换流器的重复预测控制[J]. 中国电机工程学报, 2015, 35(7): 1637–1643 XIA Xiangyang, ZHOU Yun, SHUAI Zhikang. Repeat predictive control of modular multilevel converter in high voltage direct current system[J]. Proceedings of the CSEE, 2015, 35(7): 1637–1643 [5] 管敏渊, 徐政, 潘武略, 等. 电网故障时模块化多电平换流器型高压直流输电系统的分析与控制[J]. 高电压技术, 2013, 39(5): 1238–1245 GUAN Minyuan, XU Zheng, PAN Wulue, et al. Analysis and control of modular multilevel converter based HVDC transmission systems during grid faults[J]. High Voltage Engineering, 2013, 39(5): 1238–1245 [6] SAAD H, FILLION Y, DESCHANVRES S, et al. On resonances and harmonics in HVDC-MMC station connected to AC grid[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1565–1573. [7] 夏向阳, 易浩民, 邱欣, 等. 双重功率优化控制的规模化光伏并网电压越限研究[J]. 中国电机工程学报, 2016, 36(19): 5164–5171, 5397 XIA Xiangyang, YI Haomin, QIU Xin, et al. Research on dual power optimal control for scaled photovoltaic grid-connected voltage[J]. Proceedings of the CSEE, 2016, 36(19): 5164–5171, 5397 [8] 李国庆, 张林, 江守其, 等. 风电经双极混合型MMC-HVDC并网的直流故障穿越协调控制策略[J]. 电力系统保护与控制, 2021, 49(10): 27–36 LI Guoqing, ZHANG Lin, JIANG Shouqi, et al. Coordinated control strategies for DC fault ride-through of wind power integration via bipolar hybrid MMC-HVDC overhead lines[J]. Power System Protection and Control, 2021, 49(10): 27–36 [9] 朱亮亮, 陈洁, 王小军, 等. 基于改进MMC的静止无功发生器[J]. 南方电网技术, 2021, 15(7): 47–53 ZHU Liangliang, CHEN Jie, WANG Xiaojun, et al. Static VAR generator based on improved MMC[J]. Southern Power System Technology, 2021, 15(7): 47–53 [10] FELDMAN R, TOMASINI M, AMANKWAH E, et al. A hybrid modular multilevel voltage source converter for HVDC power transmission[J]. IEEE Transactions on Industry Applications, 2013, 49(4): 1577–1588. [11] 曹春刚, 赵成勇, 陈晓芳. MMC-HVDC系统数学模型及其控制策略[J]. 电力系统及其自动化学报, 2012, 24(4): 13–18 CAO Chungang, ZHAO Chengyong, CHEN Xiaofang. Mathematical model and control strategy of MMC-HVDC[J]. Proceedings of the CSU-EPSA, 2012, 24(4): 13–18 [12] 鲁晓军, 林卫星, 安婷, 等. MMC电气系统动态相量模型统一建模方法及运行特性分析[J]. 中国电机工程学报, 2016, 36(20): 5479–5491, 5724 LU Xiaojun, LIN Weixing, AN Ting, et al. A unified dynamic phasor modeling and operating characteristic analysis of electrical system of MMC[J]. Proceedings of the CSEE, 2016, 36(20): 5479–5491, 5724 [13] 杨晓峰, 李泽杰, 郑琼林. 基于虚拟阻抗滑模控制的MMC环流抑制策略[J]. 中国电机工程学报, 2018, 38(23): 6893–6904, 7123 YANG Xiaofeng, LI Zejie, ZHENG qionglin. A novel MMC circulating current suppressing strategy based on virtual impedance sliding mode control[J]. Proceedings of the CSEE, 2018, 38(23): 6893–6904, 7123 [14] DA SILVA G S, VIEIRA R P, RECH C. Discrete-time sliding-mode observer for capacitor voltage control in modular multilevel converters[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 876–886. [15] 黄智, 夏向阳, 赵昕昕, 等. 模块化多电平换流器优化模型预测控制策略[J]. 中南大学学报(自然科学版), 2020, 51(1): 86–93 HUANG Zhi, XIA Xiangyang, ZHAO Xinxin, et al. Optimized model predictive control strategy of modular multilevel converter[J]. Journal of Central South University (Science and Technology), 2020, 51(1): 86–93 [16] RIAR B S, GEYER T, MADAWALA U K. Model predictive direct current control of modular multilevel converters: modeling, analysis, and experimental evaluation[J]. IEEE Transactions on Power Electronics, 2015, 30(1): 431–439. [17] YANG S F, TANG Y, XU Z, et al. Feedback linearization based current control strategy for modular multilevel converters[C]//2017 IEEE Applied Power Electronics Conference and Exposition (APEC). Tampa, FL, USA. IEEE, 2017: 659–665. [18] 李正, 郝全睿, 王淑颖, 等. 基于状态反馈精确线性化的MMC非线性解耦控制研究[J]. 中国电机工程学报, 2019, 39(12): 3646–3659 LI Zheng, HAO Quanrui, WANG Shuying, et al. Nonlinear decoupling control of MMC based on feedback linearization theory[J]. Proceedings of the CSEE, 2019, 39(12): 3646–3659 [19] ZHANG J L, YAN J G, ZHANG P. Multi-UAV formation control based on a novel back-stepping approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2437–2448. [20] 张春燕, 盛安冬, 戚国庆, 等. 基于反步法的有限时间机器人环航控制器设计[J]. 自动化学报, 2019, 45(3): 540–552 ZHANG Chunyan, SHENG Andong, QI Guoqing, et al. Finite-time standoff tracking control of moving target by means of backstepping for non-holonmic robot[J]. Acta Automatica Sinica, 2019, 45(3): 540–552 [21] 尹忠刚, 靳海旭, 张彦平, 等. 基于扰动观测器的交流伺服系统低速爬行滤波反步控制方法[J]. 电工技术学报, 2020, 35(增刊1): 203–211 YIN Zhonggang, JIN Haixu, ZHANG Yanping, et al. Disturbance observer-based filter backstepping control with low speed crawling for AC servo system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 203–211 [22] SUN D, WANG X H, FANG Y. Backstepping direct power control without phase-locked loop of AC/DC converter under both balanced and unbalanced grid conditions[J]. IET Power Electronics, 2016, 9(8): 1614–1624. [23] GIRI F, ABOULOIFA A, LACHKAR I, et al. Formal framework for nonlinear control of PWM AC/DC boost rectifiers—controller design and average performance analysis[J]. IEEE Transactions on Control Systems Technology, 2010, 18(2): 323–335. [24] ZHU S Y, HUANG J J, ZHANG X T, et al. Backstepping based nonlinear control for the modular multilevel converter to against parameters variation[C]//2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA). Xi'an, China. IEEE, 2019: 2254–2259.
|