中国电力 ›› 2023, Vol. 56 ›› Issue (11): 38-48.DOI: 10.11930/j.issn.1004-9649.202306023
收稿日期:
2023-06-07
接受日期:
2023-10-16
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
何维轩(1996—),男,硕士研究生,从事电力电子化电力系统继电保护技术研究,E-mail: weixuanhe@126.com基金资助:
Weixuan HE1(), Zhengzhen FAN2(
), Yaotong HUO3, Yingyu LIANG1(
)
Received:
2023-06-07
Accepted:
2023-10-16
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
柔性低频输电系统交流海缆线路两侧为电力电子换流器,故障电流特性由换流器控制策略决定,与传统同步电源存在差别,导致传统电流差动保护存在不正确动作风险。为解决此问题,基于海上风电经柔性低频输电送出系统海缆线路的故障电流特性,对传统电流差动保护进行了动作性能分析,揭示了动作性能下降的原因,提出了一种基于交叉熵算法的新型纵联保护方案。该方案先对一侧电流采样值进行虚拟负电容补偿和相反数处理,再计算其与另一侧电流的交叉熵,根据交叉熵的变化判断区外和区内故障。硬件在环实验结果表明:该方案能在海缆发生各种类型故障时正确动作,抗高过渡电阻的能力强,同时对TA测量误差具备良好的耐受能力,可作为柔性低频输电海缆的主保护。
何维轩, 樊征臻, 霍姚彤, 梁营玉. 基于交叉熵的海上风电经柔性低频送出系统海缆纵联保护[J]. 中国电力, 2023, 56(11): 38-48.
Weixuan HE, Zhengzhen FAN, Yaotong HUO, Yingyu LIANG. Pilot Protection Scheme of Submarine Cable in Flexible Low-Frequency Transmission System Based on Cross Entropy Algorithm[J]. Electric Power, 2023, 56(11): 38-48.
区间 | 1 | 2 | 3 | 4 | 5 | |||||
pi(IM) | 0.342 | 0.147 | 0.123 | 0.085 | 0.048 | |||||
qi(IN) | 0.342 | 0.147 | 0.125 | 0.085 | 0.048 | |||||
区间 | 6 | 7 | 8 | 9 | 10 | |||||
pi(IM) | 0.047 | 0.046 | 0.047 | 0.042 | 0.063 | |||||
qi(IN) | 0.047 | 0.046 | 0.047 | 0.047 | 0.063 |
表 1 系统正常运行时海缆两侧电流概率化结果
Table 1 Probabilistic results of current on two sides of submarine cable during normal operation of the system
区间 | 1 | 2 | 3 | 4 | 5 | |||||
pi(IM) | 0.342 | 0.147 | 0.123 | 0.085 | 0.048 | |||||
qi(IN) | 0.342 | 0.147 | 0.125 | 0.085 | 0.048 | |||||
区间 | 6 | 7 | 8 | 9 | 10 | |||||
pi(IM) | 0.047 | 0.046 | 0.047 | 0.042 | 0.063 | |||||
qi(IN) | 0.047 | 0.046 | 0.047 | 0.047 | 0.063 |
1 | 孙艳霞, 方是文, 李震. 海上风电经交流电缆汇集送出系统暂态无功电压建模及特性分析[J]. 中国电力, 2022, 55 (4): 166- 174. |
SUN Yanxia, FANG Shiwen, LI Zhen. Transient voltage-reactive power modeling of offshore wind power collection and transmission system with AC cables and characteristic analysis[J]. Electric Power, 2022, 55 (4): 166- 174. | |
2 |
WANG X F, WANG X L. Feasibility study of fractional frequency transmission system[J]. IEEE Transactions on Power Systems, 1996, 11 (2): 962- 967.
DOI |
3 |
林进钿, 倪晓军, 裘鹏. 柔性低频交流输电技术研究综述[J]. 浙江电力, 2021, 40 (10): 42- 50.
DOI |
LIN Jintian, NI Xiaojun, QIU Peng. Review of flexible low-frequency AC transmission technology[J]. Zhejiang Electric Power, 2021, 40 (10): 42- 50.
DOI |
|
4 | 唐巍, 郭雨桐, 闫姝, 等. 多场景海上风电场关键设备技术经济性分析[J]. 中国电力, 2021, 54 (7): 178- 184, 216. |
TANG Wei, GUO Yutong, YAN Shu, et al. Techno-economic analysis of key equipment for offshore wind farms with multiple scenarios[J]. Electric Power, 2021, 54 (7): 178- 184, 216. | |
5 |
郑黎明, 贾科, 毕天姝, 等. 海上风电接入柔直系统交流侧故障特征及对保护的影响分析[J]. 电力系统保护与控制, 2021, 49 (20): 20- 32.
DOI |
ZHENG Liming, JIA Ke, BI Tianshu, et al. AC-side fault analysis of a VSC-HVDC transmission system connected to offshore wind farms and the impact on protection[J]. Power System Protection and Control, 2021, 49 (20): 20- 32.
DOI |
|
6 | 梁营玉, 卢正杰. 基于补偿系数的有源配电网自适应电流差动保护[J]. 电网技术, 2022, 46 (6): 2268- 2275. |
LIANG Yingyu, LU Zhengjie. Adaptive differential protection principle based on compensation coefficient for active distribution network[J]. Power System Technology, 2022, 46 (6): 2268- 2275. | |
7 | LIANG Y, REN Y, HE W. An enhanced current differential protection for AC transmission lines connecting MMC-HVDC stations[J]. IEEE Systems Journal, 2022, 17 (1): 892- 903. |
8 |
戎子睿, 金能, 林湘宁, 等. 基于Hausdorff距离的自适应母线保护新原理[J]. 电网技术, 2021, 45 (1): 312- 321.
DOI |
RONG Zirui, JIN Neng, LIN Xiangning, et al. A novel criterion of adaptive busbar protection based on Hausdorff distance algorithm[J]. Power System Technology, 2021, 45 (1): 312- 321.
DOI |
|
9 |
郑黎明, 贾科, 侯来运, 等. 基于奇异值分解的海上风电接入柔直系统的交流线路保护[J]. 中国电机工程学报, 2020, 40 (S1): 75- 83.
DOI |
ZHENG Liming, JIA Ke, HOU Laiyun, et al. Singular value decomposition based protection for AC transmission lines of VSC-HVDC system with offshore wind farms[J]. Proceedings of the CSEE, 2020, 40 (S1): 75- 83.
DOI |
|
10 |
贾科, 郑黎明, 毕天姝, 等. 基于余弦相似度的风电场站送出线路纵联保护[J]. 中国电机工程学报, 2019, 39 (21): 6263- 6275.
DOI |
JIA Ke, ZHENG Liming, BI Tianshu, et al. Pilot protection based on cosine similarity for transmission line connected to wind farms[J]. Proceedings of the CSEE, 2019, 39 (21): 6263- 6275.
DOI |
|
11 |
YANG Z, LIAO W L, WANG H Y, et al. Improved euclidean distance based pilot protection for lines with renewable energy sources[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (12): 8551- 8562.
DOI |
12 | 杨舒婷, 陈新, 黄通, 等. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56 (4): 38- 45. |
YANG Shuting, CHEN Xin, HUANG Tong, et al. Impedance modeling method of offshore wind farm integration through MMC-HVDC with MMC circulation control[J]. Electric Power, 2023, 56 (4): 38- 45. | |
13 |
郑黎明, 贾科, 毕天姝, 等. 基于结构相似度与平方误差的新能源场站送出线路纵联保护综合判据[J]. 电网技术, 2020, 44 (5): 1788- 1797.
DOI |
ZHENG Liming, JIA Ke, BI Tianshu, et al. Comprehensive criteria of pilot protection based on structural similarity and square error for outgoing line from renewable power plants[J]. Power System Technology, 2020, 44 (5): 1788- 1797.
DOI |
|
14 |
ZHANG G X, TONG X Y, HONG Q T, et al. Waveform similarity-based robust pilot protection for transmission lines[J]. IEEE Transactions on Power Delivery, 2022, 37 (3): 1856- 1865.
DOI |
15 |
翁汉琍, 陈皓, 万毅, 等. 基于Bhattacharyya距离算法的线路纵联保护新判据[J]. 电网技术, 2020, 44 (2): 751- 760.
DOI |
WENG Hanli, CHEN Hao, WAN Yi, et al. Novel criterion applicable to transmission line pilot protection based on bhattacharyya distance algorithm[J]. Power System Technology, 2020, 44 (2): 751- 760.
DOI |
|
16 |
ZHENG L M, JIA K, BI T S, et al. Cosine similarity based line protection for large-scale wind farms[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (7): 5990- 5999.
DOI |
17 |
TAO R F, LI F T, CHEN W W, et al. Research on the protection coordination of permanent magnet synchronous generator based wind farms with low voltage ride through capability[J]. Protection and Control of Modern Power Systems, 2017, 2 (1): 1- 9.
DOI |
18 | HO Y, WOOKEY S. The real-world-weight cross-entropy loss function: modeling the costs of mislabeling[J]. IEEE Access, 2019, 8, 4806- 4813. |
19 | 田宝玉, 杨洁, 贺志强. 信息论基础[M]. 2版. 北京: 人民邮电出版社, 2016. |
20 | 邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020. |
21 |
WU C J, ZHANG D H, HE J H. A novel protection scheme for MMC-HVDC transmission lines based on cross-entropy of charge[J]. IEEE Access, 2020, 8, 222800- 222812.
DOI |
22 |
CAMARILLO-PEÑARANDA J R, AREDES M, RAMOS G. Hardware-in-the-loop testing of a distance protection relay[J]. IEEE Transactions on Industry Applications, 2021, 57 (3): 2326- 2331.
DOI |
[1] | 沙兆义, 王聪博, 詹荣荣, 余越, 王剑锋. 基于故障全电流多阶突变的换流器并网线路纵联保护[J]. 中国电力, 2024, 57(2): 62-71. |
[2] | 李铁成, 范辉, 张卫明, 王献志, 张艺宏, 戴志辉. 基于5G通信的有源配电网新能源送出线路纵联保护[J]. 中国电力, 2024, 57(11): 139-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||