中国电力 ›› 2024, Vol. 57 ›› Issue (10): 102-114.DOI: 10.11930/j.issn.1004-9649.202403054
戴志辉1(), 柳梅元1(
), 韦舒清1, 朱卫平2, 王文卓1
收稿日期:
2024-03-14
出版日期:
2024-10-28
发布日期:
2024-10-25
作者简介:
戴志辉(1980—),男,通信作者,博士,教授,从事电力系统继电保护与控制研究,E-mail:daihuadian@163.com基金资助:
Zhihui DAI1(), Meiyuan LIU1(
), Shuqing WEI1, Weiping ZHU2, Wenzhuo WANG1
Received:
2024-03-14
Online:
2024-10-28
Published:
2024-10-25
Supported by:
摘要:
受光伏逆变器控制策略影响,光伏场站呈弱馈性和电流相位受控特性,导致送出线路光伏侧距离保护的测量阻抗无法正确反映故障所在位置,抗过渡电阻能力大大下降。根据送出线路系统的故障分量序网图推导出线路短路阻抗的求解方程组,同时基于光伏场站直流母线接入的超导磁储能(superconducting magnetic energy storage,SMES)改变传统的低电压穿越控制策略,通过控保协同消除方程组中的未知量,进而对线路短路阻抗进行求解,提出了基于超导磁储能的光伏场站送出线路距离保护方案。与现有推导线路短路阻抗的方法相比,该方法不存在近似计算,计算准确度得到很大提升;且相比于其他控保协同方案,该方案在保证距离保护可靠动作的同时也兼顾了故障期间光伏场站对于电网的无功支撑,其低电压穿越能力不仅没有被削弱,反而得到一定的提升。
戴志辉, 柳梅元, 韦舒清, 朱卫平, 王文卓. 基于超导磁储能的光伏场站送出线路距离保护[J]. 中国电力, 2024, 57(10): 102-114.
Zhihui DAI, Meiyuan LIU, Shuqing WEI, Weiping ZHU, Wenzhuo WANG. Distance Protection for Outgoing Line of Photovoltaic Station Based on Superconducting Magnetic Energy Storage[J]. Electric Power, 2024, 57(10): 102-114.
系统参数 | 数值 | 系统参数 | 数值 | |||
正序电阻/(Ω·km–1) | 0.14 | 正序电抗/(Ω·km–1) | 0.38 | |||
零序电阻/(Ω·km–1) | 0.39 | 零序电抗/(Ω·km–1) | 1.18 | |||
额定电压/kV | 35 | 频率/Hz | 50 | |||
光伏场站容量/MW | 10 | 系统短路容量/MW | 200 | |||
线路长度/km | 100 |
表 1 仿真模型参数
Table 1 Parameters of simulation model
系统参数 | 数值 | 系统参数 | 数值 | |||
正序电阻/(Ω·km–1) | 0.14 | 正序电抗/(Ω·km–1) | 0.38 | |||
零序电阻/(Ω·km–1) | 0.39 | 零序电抗/(Ω·km–1) | 1.18 | |||
额定电压/kV | 35 | 频率/Hz | 50 | |||
光伏场站容量/MW | 10 | 系统短路容量/MW | 200 | |||
线路长度/km | 100 |
故障类型 | Rf/Ω | ltrue/km | lcal/km | |||
AG | 20 | 10 | 10.34 | |||
20 | 40 | 40.27 | ||||
20 | 70 | 70.33 | ||||
BC | 20 | 10 | 10.53 | |||
20 | 40 | 40.39 | ||||
20 | 70 | 70.41 | ||||
BCG | 20 | 10 | 10.61 | |||
20 | 40 | 40.65 | ||||
20 | 70 | 70.52 |
表 2 不同故障位置下计算结果
Table 2 Calculation results under different fault locations
故障类型 | Rf/Ω | ltrue/km | lcal/km | |||
AG | 20 | 10 | 10.34 | |||
20 | 40 | 40.27 | ||||
20 | 70 | 70.33 | ||||
BC | 20 | 10 | 10.53 | |||
20 | 40 | 40.39 | ||||
20 | 70 | 70.41 | ||||
BCG | 20 | 10 | 10.61 | |||
20 | 40 | 40.65 | ||||
20 | 70 | 70.52 |
故障类型 | Rf/Ω | ltrue/km | lcal/km | |||
AG | 75 | 80 | 80.76 | |||
125 | 80 | 81.12 | ||||
175 | 80 | 81.24 | ||||
BC | 75 | 80 | 78.57 | |||
125 | 80 | 80.75 | ||||
175 | 80 | 81.12 | ||||
BCG | 75 | 80 | 80.61 | |||
125 | 80 | 80.93 | ||||
175 | 80 | 81.11 |
表 3 不同过渡电阻下计算结果
Table 3 Calculation results under different fault resistances
故障类型 | Rf/Ω | ltrue/km | lcal/km | |||
AG | 75 | 80 | 80.76 | |||
125 | 80 | 81.12 | ||||
175 | 80 | 81.24 | ||||
BC | 75 | 80 | 78.57 | |||
125 | 80 | 80.75 | ||||
175 | 80 | 81.12 | ||||
BCG | 75 | 80 | 80.61 | |||
125 | 80 | 80.93 | ||||
175 | 80 | 81.11 |
光伏场站容量/MW | 故障类型 | ltrue/km | lcal/km | 保护动作 | ||||
20 | AG | 30 | 30.12 | √ | ||||
60 | 60.21 | √ | ||||||
85 | 85.27 | √ | ||||||
BC | 30 | 30.17 | √ | |||||
60 | 60.34 | √ | ||||||
85 | 85.38 | √ | ||||||
BCG | 30 | 30.24 | √ | |||||
60 | 60.41 | √ | ||||||
85 | 85.54 | √ | ||||||
40 | AG | 30 | 30.10 | √ | ||||
60 | 60.20 | √ | ||||||
85 | 85.29 | √ | ||||||
BC | 30 | 30.14 | √ | |||||
60 | 60.31 | √ | ||||||
85 | 85.34 | √ | ||||||
BCG | 30 | 30.19 | √ | |||||
60 | 60.39 | √ | ||||||
85 | 85.48 | √ |
表 4 不同光伏容量时计算结果
Table 4 Calculation results of different photovoltaic capacity
光伏场站容量/MW | 故障类型 | ltrue/km | lcal/km | 保护动作 | ||||
20 | AG | 30 | 30.12 | √ | ||||
60 | 60.21 | √ | ||||||
85 | 85.27 | √ | ||||||
BC | 30 | 30.17 | √ | |||||
60 | 60.34 | √ | ||||||
85 | 85.38 | √ | ||||||
BCG | 30 | 30.24 | √ | |||||
60 | 60.41 | √ | ||||||
85 | 85.54 | √ | ||||||
40 | AG | 30 | 30.10 | √ | ||||
60 | 60.20 | √ | ||||||
85 | 85.29 | √ | ||||||
BC | 30 | 30.14 | √ | |||||
60 | 60.31 | √ | ||||||
85 | 85.34 | √ | ||||||
BCG | 30 | 30.19 | √ | |||||
60 | 60.39 | √ | ||||||
85 | 85.48 | √ |
故障类型 | Rf/Ω | 文献[ | 本文 | |||
lcal/km | lcal/km | |||||
AG | 20 | 82.12 | 80.76 | |||
40 | 83.27 | 81.12 | ||||
60 | 83.96 | 81.24 | ||||
BC | 20 | 83.17 | 78.57 | |||
40 | 83.73 | 80.75 | ||||
60 | 84.05 | 81.02 | ||||
BCG | 20 | 82.49 | 80.61 | |||
40 | 84.65 | 80.93 | ||||
60 | 84.87 | 81.11 |
表 5 文献[15]与本文方法比较结果
Table 5 Comparison between methods in [15] and in this paper
故障类型 | Rf/Ω | 文献[ | 本文 | |||
lcal/km | lcal/km | |||||
AG | 20 | 82.12 | 80.76 | |||
40 | 83.27 | 81.12 | ||||
60 | 83.96 | 81.24 | ||||
BC | 20 | 83.17 | 78.57 | |||
40 | 83.73 | 80.75 | ||||
60 | 84.05 | 81.02 | ||||
BCG | 20 | 82.49 | 80.61 | |||
40 | 84.65 | 80.93 | ||||
60 | 84.87 | 81.11 |
1 | 李铁成, 范辉, 臧谦, 等. 基于5G通信的有源配电网多点同步保护方案[J]. 中国电力, 2023, 56 (11): 113- 120. |
LI Tiecheng, FAN Hui, ZANG Qian, et al. Multi-point synchronous protection scheme for active distribution network based on 5G communication[J]. Electric Power, 2023, 56 (11): 113- 120. | |
2 | 金恩淑, 刘丹阳, 夏国武. 特高压换流变压器差动保护适用性分析及其改进方法[J]. 东北电力大学学报, 2023, 43 (1): 20- 28. |
JIN Enshu, LIU Danyang, XIA Guowu. Applicability analysis and improvement method of differential protection of converter transformer in UHVDC system[J]. Journal of Northeast Electric Power University, 2023, 43 (1): 20- 28. | |
3 | 罗美玲, 李紫肖, 郑涛, 等. 基于模糊多判据融合的单端暂态量保护新方案[J]. 中国电力, 2024, 57 (3): 60- 72. |
LUO Meiling, LI Zixiao, ZHENG Tao, et al. Single terminal transient protection scheme based on fuzzy multi-criteria fusion[J]. Electric Power, 2024, 57 (3): 60- 72. | |
4 | 李润培, 桂林, 吴龙, 等. 励磁方式差异对RAM发电机过流保护整定的影响[J]. 中国电力, 2023, 56 (3): 86- 93. |
LI Runpei, GUI Lin, WU Long, et al. Influence of excitation mode difference on RAM generator overcurrent protection setting[J]. Electric Power, 2023, 56 (3): 86- 93. | |
5 | 闫桂红, 李丹丹, 刘小恺, 等. 分布式调相机对大规模新能源直流送端系统的稳定特性影响[J]. 内蒙古电力技术, 2024, 42 (4): 80- 86. |
YAN Guihong, LI Dandan, LIU Xiaokai, et al. Impact of distributed regulator on stability characteristics of large-scale new energy DC sending-end system[J]. Inner Mongolia Electric Power, 2024, 42 (4): 80- 86. | |
6 | 李吉峰, 唐克, 王孜航, 等. 计及多源互补特性的新型电力系统分布式电源承载能力评估[J]. 东北电力大学学报, 2023, 43 (1): 62- 68. |
LI Jifeng, TANG Ke, WANG Zihang, et al. Assessment of distributed power generations bearing capacity of modern power systems with multi-sources complementary characteristics[J]. Journal of Northeast Electric Power University, 2023, 43 (1): 62- 68. | |
7 | 李会新, 陈祥文, 金明亮, 等. 常规直流逆变站交流送出线路距离保护适应性分析与对策[J]. 中国电力, 2024, 57 (2): 115- 126. |
LI Huixin, CHEN Xiangwen, JIN Mingliang, et al. Adaptability analysis and countermeasures for distance protection of AC transmission lines connected LCC-HVDC inverter station[J]. Electric Power, 2024, 57 (2): 115- 126. | |
8 |
曾翔, 文明浩, 钱堃, 等. 逆变型分布式电源接入对接地距离保护的影响与对策[J]. 智慧电力, 2023, 51 (1): 46- 53.
DOI |
ZENG Xiang, WEN Minghao, QIAN Kun, et al. Influence of inverter-interfaced distributed generation integration on grounding distance protection and its strategies[J]. Smart Power, 2023, 51 (1): 46- 53.
DOI |
|
9 |
李彦宾, 贾科, 毕天姝, 等. 逆变型电源对距离保护的影响机理分析[J]. 电力系统保护与控制, 2018, 46 (16): 54- 59.
DOI |
LI Yanbin, JIA Ke, BI Tianshu, et al. Impact of inverter-interfaced renewable energy generators on distance protection[J]. Power System Protection and Control, 2018, 46 (16): 54- 59.
DOI |
|
10 |
黄少锋, 曹凯, 罗澜. 一种消除过渡电阻影响的阻抗测量方法[J]. 电力系统自动化, 2013, 37 (23): 108- 113.
DOI |
HUANG Shaofeng, CAO Kai, LUO Shan. A method of impedance measurement to eliminate influence of transition resistance[J]. Automation of Electric Power Systems, 2013, 37 (23): 108- 113.
DOI |
|
11 |
FANG Yu, JIA Ke, YANG Zhe, et al. Impact of inverter-interfaced renewable energy generators on distance protection and an improved scheme[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (9): 7078- 7088.
DOI |
12 |
HOOSHYAR A, AZZOUZ M A, El-SAADANY E F. Distance protection of lines emanating from full-scale converter interfaced renewable energy power plants—Part II: Solution Description and Evaluation[J]. IEEE Transactions on Power Delivery, 2015, 30 (4): 1781- 1791.
DOI |
13 | 马伟, 黄晓波, 吴旻昊, 等. 一种抗过渡电阻的阻抗测量改进方案[J]. 电网技术, 2020, 44 (3): 1134- 1139. |
MA Wei, HUANG Xiaobo, WU Minghao, et al. An improved scheme of impedance measurement against transition resistance[J]. Power System Technology, 2020, 44 (3): 1134- 1139. | |
14 |
桂小智, 宋国兵, 常鹏, 等. 适用于新能源并网系统的距离保护方法[J]. 电力工程技术, 2023, 42 (3): 250- 257.
DOI |
GUI Xiaozhi, SONG Guobing, CHANG Peng, et al. Distance protection method applicable to renewable energy grid-connected systems[J]. Jiangsu Electrical Engineering, 2023, 42 (3): 250- 257.
DOI |
|
15 | 季亮, 张林楠, 姜恩宇, 等. 提升距离保护适应性的新能源主动故障控制研究[J]. 太阳能学报, 2022, 43 (7): 22- 29. |
JI Liang, ZHANG Linnan, JIANG Enyu, et al. Research on new energy active fault control to improve adaptability of distance protection[J]. Acta Energiae Solaris Sinica, 2022, 43 (7): 22- 29. | |
16 |
BANAIEMOQADAM A, HOOSHYAR A, AZZOUZ M A. A comprehensive dual current control scheme for inverter based resources to enable correct operation of protective relays[J]. IEEE Transactions on Power Delivery, 2021, 36 (5): 2715- 2729.
DOI |
17 | 郑涛, 王可坛, 刘校销, 等. 可消除过渡电阻影响的单相接地距离保护研究[J]. 电网技术, 2017, 41 (12): 4045- 4055. |
ZHENG Tao, WANG Ketan, LIU Xiaoxiao, et al. Research on single phase grounding distance protection against transition resistance[J]. Power System Technology, 2017, 41 (12): 4045- 4055. | |
18 | 王峰渊, 方愉冬, 赵萍, 等. 一种适用于光伏场站送出线的自适应距离保护改进方案[J]. 电力系统保护与控制, 2019, 47 (20): 127- 134. |
WANG Fengyuan, FANG Yudong, ZHAO Ping, et al. An improved adaptive distance protection scheme for the outgoing line of PV power station[J]. Power System Protection and Control, 2019, 47 (20): 127- 134. | |
19 | 李党, 白浩, 霍建彬, 等. 基于零序导纳的小电阻接地系统馈线高阻接地故障保护方法[J]. 南方电网技术, 2023, 17 (7): 95- 102, 114. |
LI Dang, BAI Hao, HUO Jianbin, et al. High-resistance ground fault protection method based on zero-Sequence admittance in low-resistance ground systems[J]. Southern Power System Technology, 2023, 17 (7): 95- 102, 114. | |
20 |
CHANG Peng, SONG Guobing, HOU Junjie, et al. A single-ended fault location method for grid-connected converter system based on control and protection coordination[J]. IEEE Transactions on Power Delivery, 2022, 37 (4): 3071- 3081.
DOI |
21 | 晁晨栩, 郑晓冬, 邰能灵, 等. 针对新能源场站送出线两相短路的负序阻抗重构距离保护[J]. 电力系统自动化, 2023, 47 (22): 101- 109. |
CHAO Chenxu, ZHENG Xiaodong, TAI Nengling, et al. Distance protection based on negative-sequence impedance reconstruction for phase-to-phase short circuit of renewable power plant transmission lines[J]. Automation of Electric Power Systems, 2023, 47 (22): 101- 109. | |
22 | 李永凯, 雷勇, 苏诗慧, 等. 混合储能提高光伏低电压穿越控制策略的研究[J]. 电测与仪表, 2021, 58 (5): 1- 7. |
LI Yongkai, LEI Yong, SU Shihui, et al. Research on the control strategy of improving PV low voltage ride through by hybrid energy storage device[J]. Electrical Measurement & Instrumentation, 2021, 58 (5): 1- 7. | |
23 | 王诗雯, 刘飞, 刘沁怡, 等. 不对称故障下两级式光伏并网系统低电压穿越控制[J]. 电网技术, 2023, 47 (1): 91- 102. |
WANG Shiwen, LIU Fei, LIU Qinyi, et al. Low-voltage riding-through control strategy for two-staged grid-connected photovoltaic system under asymmetrical faults[J]. Power System Technology, 2023, 47 (1): 91- 102. | |
24 | 刘耀远, 曾成碧, 李庭敏, 等. 基于超级电容的光伏并网低电压穿越控制策略研究[J]. 电力系统保护与控制, 2014, 42 (13): 77- 82. |
LIU Yaoyuan, ZENG Chengbi, LI Tingmin, et al. Study on low-voltage ride through control strategy of photovoltaic system based on super-capacitor[J]. Power System Protection and Control, 2014, 42 (13): 77- 82. | |
25 |
钱乙卫, 田浩, 刘财华, 等. 考虑概率分布的分布式光伏无功下垂控制策略[J]. 发电技术, 2024, 45 (2): 273- 281.
DOI |
QIAN Yiwei, TIAN Hao, LIU Caihua, et al. Droop control strategy of distributed photovoltaic reactive power considering probability distribution[J]. Power Generation Technology, 2024, 45 (2): 273- 281.
DOI |
|
26 | 吴岱岳. 基于超导储能的光伏并网低电压穿越策略[D]. 湖南大学, 2021. |
WU Daiyuan. Photovoltaic grid-connected low voltage ride through strategy based on superconducting energy storage[D]. Hunan university, 2021. | |
27 | 刘建勋, 李凤婷, 解超, 等. 工频变化量距离保护在交直流混联系统中的动作特性分析及改进措施[J]. 电力科学与技术学报, 2023, 38 (1): 88- 96. |
LIU Jianxun, LI Fengting, XIE Chao, et al. Action characteristic analysis and improvement measures of the distance protection using power frequency variable components in AC/DC hybrid system[J]. Journal of Electric Power Science and Technology, 2023, 38 (1): 88- 96. | |
28 | 晁晨栩, 郑晓冬, 高飘, 等. 针对光伏场站送出线路不对称短路故障的自适应距离保护原理[J]. 中国电机工程学报, 2022, 42 (18): 6681- 6693. |
CHAO Chenxu, ZHENG Xiaodong, GAO Piao, et al. Adaptive distance protection for transmission line of photovoltaic station during asymmetric short circuit[J]. Proceedings of the CSEE, 2022, 42 (18): 6681- 6693. | |
29 | XU Kehan, ZHANG Zhe, LAI Qinghua, et al. Fault phase selection method applied to tie line of renewable energy power stations[J]. IET Generation, Transmission & Distribution, 2020, 14 (13): 2549- 2557. |
30 | 程梦帆. 几类非线性方程组的求解[D]. 中国矿业大学, 2023. |
CHEN Mengfan. The solution of several kinds of nonlinear equations[D]. China University of Mining and Technology, 2023. |
[1] | 李会新, 陈祥文, 金明亮, 刘阳, 徐海洋. 常规直流逆变站交流送出线路距离保护适应性分析与对策[J]. 中国电力, 2024, 57(2): 115-126. |
[2] | 万明元, 任鑫, 王渡, 金亚飞, 王志刚, 王廷举, 杨昌宏, 刘昊坤. 100 MW级联式S-CO2循环动态特性研究[J]. 中国电力, 2024, 57(12): 169-177. |
[3] | 程诺, 陈大才, 陈雪, 阮筱菲, 韦舒清, 韩哲宇. 计及联络开关投切的有源配网电流速断保护定值优化方案[J]. 中国电力, 2024, 57(10): 90-101. |
[4] | 冯宝成, 金震, 侯炜, 徐光福. 花瓣型配电网区域备自投系统控制策略优化研究及应用[J]. 中国电力, 2024, 57(1): 244-254. |
[5] | 石文喆, 李冰洁, 尤培培, 张泠. 基于深度强化学习的建筑能源系统优化策略[J]. 中国电力, 2023, 56(6): 114-122. |
[6] | 周文俊, 曹毅, 李杰, 金涛, 陈文剑, 周霞. 考虑风电场调控裕度的风火打捆直流外送系统无功电压紧急控制策略[J]. 中国电力, 2023, 56(4): 77-87. |
[7] | 陈培育, 崇志强, 李树青, 郗晓光, 李振斌, 王慧媛. 基于二级聚集式的端对端电力交易控制策略[J]. 中国电力, 2022, 55(9): 64-69. |
[8] | 李海涛, 刘北阳, 滕文涛, 李宽, 刘东超, 须雷. 基于可变合闸角的变压器励磁涌流抑制方法[J]. 中国电力, 2022, 55(9): 70-78. |
[9] | 贺彦强, 王英, 陈小强, 陈剑箫. 计及特征次谐波治理的铁路网侧储能系统控制策略[J]. 中国电力, 2022, 55(7): 33-41. |
[10] | 周诗嘉, 杨光源, 彭光强, 武霁阳, 辛清明. 基于多相风力发电系统的容错控制策略研究[J]. 中国电力, 2022, 55(7): 134-141. |
[11] | 李东升, 郝亮亮, 郭智琳, 曹虹, 王兴国. 调相机接入后距离保护Ⅱ段的定值优化策略[J]. 中国电力, 2022, 55(5): 76-83. |
[12] | 曹雅琦, 赵波, 王丽婕, 李相俊, 高彬桓. 基于遗传蚁群的光储电站运行效益提升策略研究[J]. 中国电力, 2022, 55(2): 9-18. |
[13] | 卢嘉豪, 陈思哲. 双边不对称工况下无网侧变换器型可变频率变压器的控制策略[J]. 中国电力, 2021, 54(12): 29-37. |
[14] | 付红军, 陈惠粉, 赵华, 王凯丰, 鲁宗相, 乔颖. 高渗透率下风电的调频技术研究综述[J]. 中国电力, 2021, 54(1): 104-115. |
[15] | 丁明, 施建雄, 韩平平, 林子豪, 张宇. 光储系统参与电网调频及调峰的综合控制策略[J]. 中国电力, 2021, 54(1): 116-123,174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||