中国电力 ›› 2023, Vol. 56 ›› Issue (6): 114-122.DOI: 10.11930/j.issn.1004-9649.202210043

• 新能源 • 上一篇    下一篇

基于深度强化学习的建筑能源系统优化策略

石文喆1,2, 李冰洁1,2, 尤培培3, 张泠1,2   

  1. 1. 湖南大学 土木工程学院,湖南 长沙 410082;
    2. 建筑安全与节能教育部重点实验室,湖南 长沙 410082;
    3. 国网能源研究院有限公司,北京 102209
  • 收稿日期:2022-10-13 修回日期:2022-11-04 发布日期:2023-07-04
  • 作者简介:石文喆(1998—),男,硕士研究生,从事深度强化学习在建筑能源系统中的理论研究,E-mail:shiwenzhe@hnu.edu.cn;张泠张 泠(1969—),女,通信作者,博士,教授,从事建筑能源系统柔性用能研究,E-mail:zhangling@hnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(51878253)。

Optimization Strategy of Building Energy System Based on Deep Reinforcement Learning

SHI Wenzhe1,2, LI Bingjie1,2, YOU Peipei3, ZHANG Ling1,2   

  1. 1. College of Civil Engineering, Hunan University, Changsha 410082, China;
    2. Key Laboratory of Building Safety and Energy Conservation, Ministry of Education, Changsha 410082, China;
    3. State Grid Energy Research Institute Co., Ltd., Beijing 102209, China
  • Received:2022-10-13 Revised:2022-11-04 Published:2023-07-04
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51878253).

摘要: 针对建筑能源系统中需求侧的负荷不确定性与供给侧的可再生能源随机性,提出一种基于深度强化学习的建筑能源系统管理优化策略。首先,搭建能源系统供需侧研究框架并建立设备模型。然后,将实时阶段下的建筑能源管理问题构建为马尔可夫决策过程,利用深度强化学习理论,以最小化用电成本、保证室内热舒适水平和最大化消纳可再生能源为优化目标,采用决斗双重深度Q网络算法进行训练,得到训练后的算法可以根据实时环境参数做出自适应控制决策。最后,通过在建筑能源系统案例中的应用,将该策略与传统的基于规则的控制策略相比较,结果表明,所提出的优化策略使用电成本降低11.03%,热不舒适时长降低89.62%,未消纳光伏发电量降低10.43%。

关键词: 建筑能源系统, 深度强化学习, 实时控制策略, 储能优化

Abstract: Aiming at the load uncertainty on the demand side of the building energy system and the randomness of renewable energy on the supply side, a building energy system management optimization strategy is proposed based on deep reinforcement learning. Firstly, a supply-demand side research framework for the energy system and device model is built. The building energy management problem under the real-time stage is constructed as Markov decision-making process, and the deep reinforcement learning theory is used to minimize the cost of electricity, ensure the indoor heat comfort level and maximize the consumption of renewable energy as the optimization goals, and the duel dual deep Q network algorithm is used for model training, and the trained model can make adaptive control decisions according to real-time environmental parameters. Finally, through the application in the building energy system case, the results show that the proposed optimization strategy reduces the cost of electricity by 11.03%, the duration of thermal discomfort by 89.62%, and the amount of unconsumed photovoltaic power generation by 10.43%, comparing with the traditional rule-based control strategy.

Key words: building energy systems, deep reinforcement learning, real-time control strategy, energy storage optimization