[1] 潘雪冬, 张文朝, 顾雪平. 发电机模型及参数动态仿真准确度的评估[J]. 电力系统及其自动化学报, 2015, 27(2): 64–69 PAN Xuedong, ZHANG Wenchao, GU Xueping. Accuracy assessment of models and parameters in generator dynamic simulation[J]. Proceedings of the CSU-EPSA, 2015, 27(2): 64–69 [2] 陈刚, 何江, 吴小辰, 等. 用基于PMU数据的理想电压源法实现混合动态仿真验证策略[J]. 电力系统保护与控制, 2011, 39(22): 57–61,67 CHEN Gang, HE Jiang, WU Xiaochen, et al. A hybrid dynamic simulation validation strategy based on ideal voltage source with PMU data[J]. Power System Protection and Control, 2011, 39(22): 57–61,67 [3] 李大虎, 张志杰, 张伟晨, 等. 背靠背柔性直流接入电网后的影响评估[J]. 电力系统保护与控制, 2019, 47(3): 71–80 LI Dahu, ZHANG Zhijie, ZHANG Weichen, et al. Influence evaluation of provincial power grid integrated with back-to-back VSC-HVDC[J]. Power System Protection and Control, 2019, 47(3): 71–80 [4] 吴为, 汤涌, 孙华东, 等. 基于广域量测信息的电力系统暂态稳定研究综述[J]. 电网技术, 2012, 36(9): 81–87 WU Wei, TANG Yong, SUN Huadong, et al. A survey on research of power system transient stability based on wide-area measurement information[J]. Power System Technology, 2012, 36(9): 81–87 [5] 蒋振国, 周在彦, 刘征帆, 等. 计及多扰动的同步发电机模型参数有效性评估[J]. 智慧电力, 2020, 48(7): 100–105,111 JIANG Zhenguo, ZHOU Zaiyan, LIU Zhengfan, et al. Effectiveness evaluation of synchronous generator model parameters considering multi-disturbances[J]. Smart Power, 2020, 48(7): 100–105,111 [6] 安军, 王孜航, 穆钢, 等. 基于WAMS测量和戴维南等值的电力系统动态仿真误差溯源及可信度验证方法[J]. 电网技术, 2013, 37(5): 1389–1394 AN Jun, WANG Zihang, MU Gang, et al. Confidence level verification and tracking to error source for power grid dynamic simulation based on WAMS and thevenin equivalence[J]. Power System Technology, 2013, 37(5): 1389–1394 [7] 姜赫, 安军, 李德鑫, 等. 基于WAMS实测数据的电力系统仿真致差区域识别方法[J]. 电力系统保护与控制, 2021, 49(4): 96–103 JIANG He, AN Jun, LI Dexin, et al. Recognition method of power system simulation error area based on WAMS measured data[J]. Power System Protection and Control, 2021, 49(4): 96–103 [8] 龙云, 王建全. 基于粒子群游算法的同步发电机参数辨识[J]. 大电机技术, 2003(1): 8–11 LONG Yun, WANG Jianquan. Parameters identification of synchronous generator based on particle swarm optimization theory[J]. Large Electric Machine and Hydraulic Turbine, 2003(1): 8–11 [9] 刘兴杰, 闫亮. 基于轨迹灵敏度的励磁系统参数可辨识性分析[J]. 电力系统自动化, 2019, 43(1): 209–214,227 LIU Xingjie, YAN Liang. Parameter identifiability analysis of excitation system based on trajectory sensitivity[J]. Automation of Electric Power Systems, 2019, 43(1): 209–214,227 [10] 韩睿, 郑竞宏, 朱守真, 等. 基于灵敏度分析的同步发电机参数分步辨识策略[J]. 电力自动化设备, 2012, 32(5): 74–80 HAN Rui, ZHENG Jinghong, ZHU Shouzhen, et al. Step identification of synchronous generator parameters based on sensitivity analysis[J]. Electric Power Automation Equipment, 2012, 32(5): 74–80 [11] 吕泽芳, 马刚, 孙先文, 等. 人工智能安全的概念、分类及研究现状综述(一)[J]. 智慧电力, 2019, 47(8): 32–42 LV Zefang, MA Gang, SUN Xianwen, et al. Overview of concept, classification & study status of artificial intelligence security(Ⅰ)[J]. Smart Power, 2019, 47(8): 32–42 [12] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484–489. [13] SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550(7676): 354–359. [14] 张瑞强. 人工智能技术在电力系统故障诊断中的运用分析[J]. 现代信息科技, 2019, 3(3): 29–31 ZHANG Ruiqiang. Analysis on the application of artificial intelligence technology in power system fault diagnosis[J]. Modern Information Technology, 2019, 3(3): 29–31 [15] 汤奕, 崔晗, 李峰, 等. 人工智能在电力系统暂态问题中的应用综述[J]. 中国电机工程学报, 2019, 39(1): 2–13,315 TANG Yi, CUI Han, LI Feng, et al. Review on artificial intelligence in power system transient stability analysis[J]. Proceedings of the CSEE, 2019, 39(1): 2–13,315 [16] 周聪. 人工智能技术在电力调度中的应用[J]. 数字技术与应用, 2018, 36(11): 63–64 ZHOU Cong. Application of artificial intelligence technology in electric power dispatching[J]. Digital Technology & Application, 2018, 36(11): 63–64 [17] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29): 5029–5040 XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29): 5029–5040 [18] 丁明, 王伟胜, 王秀丽, 等. 大规模光伏发电对电力系统影响综述[J]. 中国电机工程学报, 2014, 34(1): 1–14 DING Ming, WANG Weisheng, WANG Xiuli, et al. A review on the effect of large-scale PV generation on power systems[J]. Proceedings of the CSEE, 2014, 34(1): 1–14 [19] 徐超, 卢锦玲, 张洁, 等. 提高双馈风力发电机并网系统暂态稳定性的控制策略[J]. 电工电能新技术, 2015, 34(6): 45–51 XU Chao, LU Jinling, ZHANG Jie, et al. Control strategy for transient stability improvement of doubly-fed wind power generation system[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(6): 45–51 [20] 陈学松, 杨宜民. 强化学习研究综述[J]. 计算机应用研究, 2010, 27(8): 2834–2838,2844 CHEN Xuesong, YANG Yimin. Reinforcement learning: survey of recent work[J]. Application Research of Computers, 2010, 27(8): 2834–2838,2844 [21] 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1–27 LIU Quan, ZHAI Jianwei, ZHANG Zongzhang, et al. A survey on deep reinforcement learning[J]. Chinese Journal of Computers, 2018, 41(1): 1–27 [22] 赵星宇, 丁世飞. 深度强化学习研究综述[J]. 计算机科学, 2018, 45(7): 1–6 ZHAO Xingyu, DING Shifei. Research on deep reinforcement learning[J]. Computer Science, 2018, 45(7): 1–6 [23] PETERS J, SCHAAL S. Natural actor-critic[J]. Neurocomputing, 2008, 71(7): 1180–1190. [24] BHATNAGAR S, SUTTON R S, GHAVAMZADEH M, et al. Natural actor-critic algorithms[J]. Automatica, 2009, 45(11): 2471–2482. [25] 刘建伟, 高峰, 罗雄麟. 基于值函数和策略梯度的深度强化学习综述[J]. 计算机学报, 2019, 42(6): 1406–1438 LIU Jianwei, GAO Feng, LUO Xionglin. Survey of deep reinforcement learning based on value function and policy gradient[J]. Chinese Journal of Computers, 2019, 42(6): 1406–1438
|