中国电力 ›› 2025, Vol. 58 ›› Issue (4): 78-89.DOI: 10.11930/j.issn.1004-9649.202410051
• 风电机组暂态运行控制与试验验证关键技术 • 上一篇 下一篇
收稿日期:
2024-10-15
录用日期:
2025-01-13
发布日期:
2025-04-23
出版日期:
2025-04-28
作者简介:
基金资助:
WANG Guanchao1(), HUO Yuchong1(
), LI Qun2(
), LI Qiang2(
)
Received:
2024-10-15
Accepted:
2025-01-13
Online:
2025-04-23
Published:
2025-04-28
Supported by:
摘要:
风电场的功率捕获能力受多种因素的制约。为最大化风电场的功率输出,并应对尾流效应和湍流风速的影响,提出一种基于深度强化学习的风电场控制方案。该方案结合有模型与无模型的控制方法,并整合至基于Actor-Critic架构的深度确定性策略梯度强化学习网络中。在控制精度方面,采用改进的Jensen尾流模型,通过考虑时间延迟,提升了尾流效应的精确性,并有效捕捉了风电场长期功率输出。仿真结果表明,相比于传统单纯的有模型或者无模型方法,所提方法有效提升了风电场的最大功率输出,同时在保证控制精度的基础上,显著降低了训练时间和计算资源消耗,从而提升了控制策略的整体性能。
王冠朝, 霍雨翀, 李群, 李强. 基于深度强化学习与改进Jensen模型的风电场功率优化[J]. 中国电力, 2025, 58(4): 78-89.
WANG Guanchao, HUO Yuchong, LI Qun, LI Qiang. Power Optimization of Wind Farms Based on Improved Jensen Model and Deep Reinforcement Learning[J]. Electric Power, 2025, 58(4): 78-89.
参数 | 数值 | |
126, 500, 1.225, | ||
64, 0.001, 0.01, 0.01, 104, 0.99 | ||
迭代轮数, 步数 | ||
0.1,1 |
表 1 仿真参数设置
Table 1 Simulation parameters setting
参数 | 数值 | |
126, 500, 1.225, | ||
64, 0.001, 0.01, 0.01, 104, 0.99 | ||
迭代轮数, 步数 | ||
0.1,1 |
1 |
BOLINGER M, WISER R. Understanding wind turbine price trends in the U. S. over the past decade[J]. Energy Policy, 2012, 42, 628- 641.
DOI |
2 |
王俊, 段斌, 苏永新. 基于尾流效应的海上风电场有功出力优化[J]. 电力系统自动化, 2015, 39 (4): 26- 32, 75.
DOI |
WANG Jun, DUAN Bin, SU Yongxin. Optimization of active power output in offshore wind farms based on wake effect[J]. Automation of Electric Power Systems, 2015, 39 (4): 26- 32, 75.
DOI |
|
3 |
刘玉山, 胡阔海, 王灵梅, 等. 考虑尾流效应的风电场输出功率优化[J]. 可再生能源, 2023, 41 (10): 1336- 1342.
DOI |
LIU Yushan, HU Kuohai, WANG Lingmei, et al. Optimization of wind farm output power considering wake effect[J]. Renewable Energy Resources, 2023, 41 (10): 1336- 1342.
DOI |
|
4 |
高丙团, 胡正阳, 张磊, 等. 考虑尾流效应的风电场减载出力优化控制[J]. 可再生能源, 2018, 36 (1): 117- 125.
DOI |
GAO Bingtuan, HU Zhengyang, ZHANG Lei, et al. De-loading optimal control of wind farm based on wake effect[J]. Renewable Energy Resources, 2018, 36 (1): 117- 125.
DOI |
|
5 | 朱成名, 魏云冰, 蒋成成, 等. 基于PSO-BP神经网络的风电功率备用容量估计模型[J]. 电子科技, 2021, 34 (12): 36- 41. |
ZHU Chengming, WEI Yunbing, JIANG Chengcheng, et al. Estimation model of wind power reserve capacity based on PSO-BP neural network[J]. Electronic Science and Technology, 2021, 34 (12): 36- 41. | |
6 |
DAR Z, KAR K, SAHNI O, et al. Windfarm power optimization using yaw angle control[J]. IEEE Transactions on Sustainable Energy, 2017, 8 (1): 104- 116.
DOI |
7 |
VALI M, PETROVIĆ V, BOERSMA S, et al. Adjoint-based model predictive control for optimal energy extraction in waked wind farms[J]. Control Engineering Practice, 2019, 84, 48- 62.
DOI |
8 | YIN X X, ZHAO X W. Deep neural learning based distributed predictive control for offshore wind farm using high-fidelity LES data[J]. IEEE Transactions on Industrial Electronics, 2020, 68 (4): 3251- 3261. |
9 | ZHOU Q, LI W B, LIU C B, et al. Strategy of wind farm participating in power system secondary frequency regulation based on model predictive control[C]//2021 IEEE Sustainable Power and Energy Conference (iSPEC). Nanjing, China. IEEE, 2021: 524-531. |
10 |
AHMAD M, AZUMA S I, SUGIE T. A model-free approach for maximizing power production of wind farm using multi-resolution simultaneous perturbation stochastic approximation[J]. Energies, 2014, 7 (9): 5624- 5646.
DOI |
11 | ZHIWEI X, HUA G, BING C. Model-free power optimization of wind farm based on nelder-mead method [M]. 2020. |
12 | VIJAYSHANKAR S, STANFEL P, KING J, et al. Deep reinforcement learning for automatic generation control of wind farms[C]//2021 American Control Conference (ACC). New Orleans, LA, USA. IEEE, 2021: 1796–1802. |
13 |
YAO Q, ZHANG Y M, SUN S X, et al. Optimization of energy efficiency for offshore wind farms via wake modeling-free NMPC[J]. Ocean Engineering, 2024, 305, 117923.
DOI |
14 | DONG H Y, ZHAO X W. Data-driven wind farm control via multiplayer deep reinforcement learning[J]. IEEE Transactions on Control Systems Technology, 2022, 31 (3): 1468- 1475. |
15 |
DONG H Y, ZHANG J C, ZHAO X W. Intelligent wind farm control via deep reinforcement learning and high-fidelity simulations[J]. Applied Energy, 2021, 292, 116928.
DOI |
16 |
HUANG Y B, LIN S Y, ZHAO X W. Multi-agent reinforcement learning control of a hydrostatic wind turbine-based farm[J]. IEEE Transactions on Sustainable Energy, 2023, 14 (4): 2406- 2416.
DOI |
17 |
袁飞. 风电场常用工程尾流模型对比与分析[J]. 能源与节能, 2023, (11): 37- 41,58.
DOI |
YUAN Fei. Comparison and analysis of commonly used engineering wake models in wind farms[J]. Energy and Energy Conservation, 2023, (11): 37- 41,58.
DOI |
|
18 |
朱洁, 匡婵, 赵宜婵. 基于Jensen和Gaussian尾流模型的风电场布局优化的比较[J]. 河南科学, 2021, 39 (3): 345- 352.
DOI |
ZHU Jie, KUANG Chan, ZHAO Yichan. Comparison of wind farm layout optimizations based on Jensen and Gaussian wake models[J]. Henan Science, 2021, 39 (3): 345- 352.
DOI |
|
19 |
ARCHER C L, VASEL-BE-HAGH A, YAN C, et al. Review and evaluation of wake loss models for wind energy applications[J]. Applied Energy, 2018, 226, 1187- 1207.
DOI |
20 |
XU C, YIN M H, LI Q, et al. Wind farm power maximization based on analytical sensitivity model considering wake effect[J]. Electric Power Systems Research, 2023, 224, 109734.
DOI |
21 |
SERRANO GONZÁLEZ J, BURGOS PAYÁN M, RIQUELME SANTOS J, et al. Maximizing the overall production of wind farms by setting the individual operating point of wind turbines[J]. Renewable Energy, 2015, 80, 219- 229.
DOI |
22 |
ZHANG H Q, MA H B, ZHANG X F, et al. An efficient and lightweight off-policy actor–critic reinforcement learning framework[J]. Applied Soft Computing, 2024, 163, 111814.
DOI |
23 | 李强, 邹小明, 任必兴, 等. 基于Actor-Critic框架的风机换流器参数优化策略[J]. 现代电力, 1–10[2025-04-09]. http://doi.org/10.19725/j.cnki.1007-2322.2023.0310. |
LI Qiang, ZOU Xiaoming, REN Bixing, et al. Parameter optimization strategy for wind generator converters based on actor-critic framework[J]. Modern Electric Power, 2024, 1–10[2025-04-09]. http://doi.org/10.19725/j.cnki.1007-2322.2023.0310. | |
24 | BOERSMA S. Towards closed-loop dynamical wind farm control: model development and control applications [D]. Delft: Delft University of Technology, 2019. |
25 | NREL. NREL 5-MW baseline wind turbine[EB/OL]. https://nrel.github.io/turbine-models/NREL_5MW_126_RWT.html. |
[1] | 李鹏, 祖文静, 刘一欣, 田春筝, 郝元钊, 李慧璇. 基于不完全量测数据的配电网状态估计方法[J]. 中国电力, 2025, 58(5): 1-10. |
[2] | 樊会丛, 段志国, 陈志永, 朱士加, 刘航, 李文霄, 杨阳. 基于多智能体深度策略梯度的离网型微电网双层优化调度[J]. 中国电力, 2025, 58(5): 11-20, 32. |
[3] | 沈鑫, 王钢, 赵毅涛, 骆钊, 李钊, 杨晓华. 融合SENet注意力机制和GA-CNN的非侵入式负荷识别方法[J]. 中国电力, 2025, 58(5): 33-42. |
[4] | 王力, 蒋宇翔, 曾祥君, 赵斌, 李均昊. 基于深度强化学习的孤岛微电网二次频率控制[J]. 中国电力, 2025, 58(5): 176-188. |
[5] | 季湛洋, 胡阳, 孔令行, 宋子秋, 邓丹, 刘吉臻. 考虑多领域耦合特性的风电机组一次调频动态建模与仿真[J]. 中国电力, 2025, 58(4): 56-67. |
[6] | 曾仪, 周毅, 陆继翔, 周良才, 唐宁恺, 李红. 基于多智能体安全深度强化学习的电压控制[J]. 中国电力, 2025, 58(2): 111-117. |
[7] | 吴小忠, 肖立华, 童超, 夏向阳, 袁翎, 甘星, 江志文, 黄湘源. 基于传递熵与JS-BP神经网络的锂离子电池容量预测模型[J]. 中国电力, 2025, 58(2): 186-192, 215. |
[8] | 王宇飞, 杜桐, 边伟国, 张钊, 刘慧婷, 杨丽君. 基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测[J]. 中国电力, 2024, 57(6): 121-130. |
[9] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
[10] | 邵必林, 纪丹阳. 基于VMD-SE的电力负荷分量的多特征短期预测[J]. 中国电力, 2024, 57(4): 162-170. |
[11] | 陈巳阳, 韩利, 方济中, 丁五行, 成诚, 李文, 张源, 钱勇. 基于不确定参数的变电站碳储量预估方法[J]. 中国电力, 2024, 57(4): 200-210. |
[12] | 娄奇鹤, 李荣盛, 谭捷, 袁铁江. 基于卷积神经网络的暂稳极限功率计算[J]. 中国电力, 2024, 57(4): 211-219. |
[13] | 马汝括, 董杰, 王雅湉, 伊国鑫, 丁祥浩, 马乐. 基于神经网络的高寒地区CF4和SF6/CF4检测[J]. 中国电力, 2024, 57(3): 103-112. |
[14] | 阎洁, 杨佳琳, 王航宇, 卢姣阳, 刘永前, 张磊. 基于风况预测误差自适应的海上风电场尾流偏转控制方法[J]. 中国电力, 2024, 57(3): 190-196. |
[15] | 李卓, 王胤喆, 叶林, 罗雅迪, 宋旭日, 张振宇. 从感知-预测-优化综述图神经网络在电力系统中的应用[J]. 中国电力, 2024, 57(12): 2-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||