中国电力 ›› 2025, Vol. 58 ›› Issue (2): 186-192, 215.DOI: 10.11930/j.issn.1004-9649.202310039

• 电网 • 上一篇    下一篇

基于传递熵与JS-BP神经网络的锂离子电池容量预测模型

吴小忠1(), 肖立华1, 童超2, 夏向阳3(), 袁翎1, 甘星1, 江志文1, 黄湘源1   

  1. 1. 国网湖南省电力有限公司,湖南 长沙 410004
    2. 南京南瑞继保工程技术有限公司,江苏 南京 211100
    3. 长沙理工大学 电气与信息工程学院,湖南 长沙 410114
  • 收稿日期:2023-11-15 接受日期:2024-07-18 出版日期:2025-02-28 发布日期:2025-02-25
  • 作者简介:吴小忠(1974—),男,高级工程师,从事新能源安全保护与控制研究,E-mail:wuxiaozhong@126.com
    夏向阳(1968—),男,通信作者,教授,博士生导师,从事柔性直流输电控制和储能安全控制研究,E-mail:307351045@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51977014)。

Capacity Prediction Model of Lithium-Ion Batteries Based on Transfer Entropy and JS-BP Neural Network

Xiaozhong WU1(), Lihua XIAO1, Chao TONG2, Xiangyang XIA3(), Ling YUAN1, Xing GAN1, Zhiwen JIANG1, Xiangyuan HUANG1   

  1. 1. State Grid Hunan Electric Power Co., Ltd., Changsha 410004, China
    2. Nanjing NARI-Relays Engineering & Technology Co., Ltd., Nanjing 211100, China
    3. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • Received:2023-11-15 Accepted:2024-07-18 Online:2025-02-28 Published:2025-02-25
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51977014)

摘要:

实现储能系统安全运行,对锂离子电池可用容量的准确预测非常关键。通过对储能电池相关参数进行信息熵分析,筛选出对于电池可用容量具有显著影响的健康因子,将信息熵筛选出的健康因子与水母搜索反向传播神经网络(jellyfish search-back propagation neural network,JS-BP)相结合,建立电池可用容量预测模型。基于美国航空航天局(National Aeronautics and Space Administration,NASA)公开的相关老化数据集与电池老化实验平台的老化数据展开综合分析,其结果表明所提模型具有较高的电池容量预测精度,平均绝对误差(mean absolute error,MAE)、均方根误差(root mean square error,RMSE)均处于较低水平,验证了该模型的准确性。

关键词: 传递熵, JS-BP神经网络, 健康因子, 可用容量

Abstract:

Accurately predicting the available capacity of lithium-ion batteries is critical to ensuring the safe operation of energy storage systems. Therefore, this paper proposes a method for predicting the capacity of lithium-ion batteries in energy storage systems based on transfer entropy and JS-BP neural networks. Based on an analysis of the information entropy of relevant parameters of the energy storage batteries, the health factors that have a significant impact on the available capacity of batteries are selected, and a prediction model for the available capacity of batteries is established by combining the selected healthy factors with the JS-BP neural network. Finally, a comprehensive analysis is carried out based on the aging datasets from NASA and the battery aging experimental platform, and the results show that the proposed method has a high prediction accuracy of battery capacity, and the error indicators MAE and RMSE are at a low level, which verifies the accuracy of the model.

Key words: transfer entropy, JS-BP neural network, health factor, available capacity