中国电力 ›› 2024, Vol. 57 ›› Issue (6): 131-140.DOI: 10.11930/j.issn.1004-9649.202306094
吴军英1(), 路欣1(
), 刘宏1(
), 张彬2, 柴守亮2, 刘蕴春3(
), 王佳楠4
收稿日期:
2023-06-25
接受日期:
2024-01-15
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
吴军英(1982—),男,通信作者,高级工程师(教授级),从事区块链、标识解析、人工智能、物联网、边缘计算等研究,E-mail:wujy@he.sgcc.com.cn基金资助:
Junying WU1(), Xin LU1(
), Hong LIU1(
), Bin ZHANG2, Shouliang CHAI2, Yunchun LIU3(
), Jianan WANG4
Received:
2023-06-25
Accepted:
2024-01-15
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
为提升多区域电力负荷的预测精度,聚焦于多区域电力数据的时空相关性分析,提出了一种基于Spearman-GCN-GRU的超短期多区域电力负荷预测模型。该模型通过Spearman相关系数分析不同区域电力负荷的时空相关性,构建Spearman邻接矩阵并输入图卷积神经网络(graph convolutional network,GCN)和门控循环单元(gated recurrent unit,GRU)提取数据中的空间特征和时序特征,最后由多层感知机(multilayer perceptron,MLP)解码输出预测结果。与基于距离邻接矩阵的模型进行对比,验证了Spearman-GCN-GRU模型的可行性。在模型的预测精度上,与传统统计模型和神经网络模型相比,Spearman-GCN-GRU模型在通用的评价指标中均取得最优结果。就均方根误差(root mean square error,RMSE)而言,Spearman-GCN-GRU模型与神经网络模型GRU、GCN和深度神经网络(deep neural network,DNN)相比,RMSE指标分别下降了13.90%、11.66%和8.36%,验证了模型具有更好的预测效果。
吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140.
Junying WU, Xin LU, Hong LIU, Bin ZHANG, Shouliang CHAI, Yunchun LIU, Jianan WANG. Ultra-short-term Multi-region Power Load Forecasting Based on Spearman-GCN-GRU Model[J]. Electric Power, 2024, 57(6): 131-140.
阈值 | 区域数 | RMSE/W | RRMSE/% | MAE/W | MAPE/% | PA/% | ||||||
0.80 | 10 | 8.7759 | 13.7826 | 5.4075 | 8.5570 | 91.4119 | ||||||
0.85 | 10 | 8.2328 | 12.7745 | 4.5394 | 7.2324 | 92.9375 | ||||||
0.90 | 10 | 7.3495 | 12.5806 | 4.6102 | 7.1035 | 93.0633 |
表 1 阈值0.80~0.90对应模型预测精度对比
Table 1 Comparison of prediction accuracy with threshold varying from 0.80 to 0.90
阈值 | 区域数 | RMSE/W | RRMSE/% | MAE/W | MAPE/% | PA/% | ||||||
0.80 | 10 | 8.7759 | 13.7826 | 5.4075 | 8.5570 | 91.4119 | ||||||
0.85 | 10 | 8.2328 | 12.7745 | 4.5394 | 7.2324 | 92.9375 | ||||||
0.90 | 10 | 7.3495 | 12.5806 | 4.6102 | 7.1035 | 93.0633 |
阈值 | 区域数 | RMSE/W | RRMSE/% | MAE/W | MAPE/% | PA/% | ||||||
0.90 | 6 | 6.2266 | 11.7588 | 4.1887 | 7.0101 | 92.8098 | ||||||
0.95 | 6 | 6.6723 | 12.8625 | 3.8127 | 6.3530 | 93.5112 |
表 2 阈值0.90和0.95对应模型预测精度对比
Table 2 Comparison of prediction accuracy between threshold 0.90 and 0.95
阈值 | 区域数 | RMSE/W | RRMSE/% | MAE/W | MAPE/% | PA/% | ||||||
0.90 | 6 | 6.2266 | 11.7588 | 4.1887 | 7.0101 | 92.8098 | ||||||
0.95 | 6 | 6.6723 | 12.8625 | 3.8127 | 6.3530 | 93.5112 |
方法 | 区域数 | RMSE/W | RRMSE/% | MAE/W | MAPE/% | PA/% | ||||||
Geographic-GCN-GRU | 9 | 7.4849 | 12.6664 | 4.8888 | 7.9478 | 92.7178 | ||||||
Spearman-GCN-GRU | 9 | 6.6723 | 11.8877 | 4.4881 | 7.0999 | 93.0428 |
表 3 不同邻接矩阵对应模型的预测精度对比
Table 3 Comparison of prediction accuracy with different adjacency matrices
方法 | 区域数 | RMSE/W | RRMSE/% | MAE/W | MAPE/% | PA/% | ||||||
Geographic-GCN-GRU | 9 | 7.4849 | 12.6664 | 4.8888 | 7.9478 | 92.7178 | ||||||
Spearman-GCN-GRU | 9 | 6.6723 | 11.8877 | 4.4881 | 7.0999 | 93.0428 |
预测模型 | RMSE/W | RRMSE/% | MAE/W | MAPE/% | PA/% | |||||
SVR (kernel='rbf') | 9.4144 | 13.6433 | 6.5627 | 9.9044 | 90.1812 | |||||
GRU | 8.5369 | 13.3252 | 4.6561 | 8.3685 | 92.5577 | |||||
GCN | 8.3195 | 12.5988 | 5.0038 | 7.7763 | 92.1970 | |||||
DNN | 8.0200 | 14.0683 | 5.1853 | 8.0953 | 91.0630 | |||||
Spearman- GCN-GRU | 7.3495 | 11.7929 | 4.6102 | 7.1035 | 93.0633 |
表 4 不同模型的预测结果
Table 4 Prediction results of different models
预测模型 | RMSE/W | RRMSE/% | MAE/W | MAPE/% | PA/% | |||||
SVR (kernel='rbf') | 9.4144 | 13.6433 | 6.5627 | 9.9044 | 90.1812 | |||||
GRU | 8.5369 | 13.3252 | 4.6561 | 8.3685 | 92.5577 | |||||
GCN | 8.3195 | 12.5988 | 5.0038 | 7.7763 | 92.1970 | |||||
DNN | 8.0200 | 14.0683 | 5.1853 | 8.0953 | 91.0630 | |||||
Spearman- GCN-GRU | 7.3495 | 11.7929 | 4.6102 | 7.1035 | 93.0633 |
1 | 杨秀媛, 肖洋, 陈树勇. 风电场风速和发电功率预测研究[J]. 中国电机工程学报, 2005, 25 (11): 1- 5. |
YANG Xiuyuan, XIAO Yang, CHEN Shuyong. Wind speed and generated power forecasting in wind farm[J]. Proceedings of the CSEE, 2005, 25 (11): 1- 5. | |
2 | 杨伟, 朱巧明, 李培峰, 等. 基于时间序列的服务器负载预测[J]. 计算机工程, 2006, 32 (19): 143- 145, 148. |
YANG Wei, ZHU Qiaoming, LI Peifeng, et al. Server load prediction based on time series[J]. Computer Engineering, 2006, 32 (19): 143- 145, 148. | |
3 | 解振学, 林帆, 王若谷, 等. 基于时序动态回归的超短期光伏发电功率预测方法[J]. 智慧电力, 2022, 50 (7): 45- 51. |
XIE Zhenxue, LIN Fan, WANG Ruogu, et al. Very short-term photovoltaic power forecasting method based on time series dynamic regression[J]. Smart Power, 2022, 50 (7): 45- 51. | |
4 | 王勇, 黄国兴, 彭道刚. 带反馈的多元线性回归法在电力负荷预测中的应用[J]. 计算机应用与软件, 2008, 25 (1): 82- 84. |
WANG Yong, HUANG Guoxing, PENG Daogang. Application of multiple linear-feedback regression analysis to electric load forecasting[J]. Computer Applications and Software, 2008, 25 (1): 82- 84. | |
5 |
杨海柱, 田馥铭, 张鹏, 等. 基于CEEMD-FE和AOA-LSSVM的短期电力负荷预测[J]. 电力系统保护与控制研究, 2022, 50 (13): 126- 133.
DOI |
YANG Haizhu, TIAN Fuming, ZHANG Peng, et al. Short-term load forecasting based on CEEMD-FE-AOA-LSSVM[J]. Power System Protection and Control, 2022, 50 (13): 126- 133.
DOI |
|
6 | 蓝信军, 杨期余, 江辉. 加权模糊回归方法在电力负荷预测中的应用[J]. 长沙电力学院学报(自然科学版), 2003, 18 (4): 34- 37. |
LAN Xinjun, YANG Qiyu, JIANG Hui. The applications of weighted fuzzy regression method to power load forecasting[J]. Journal of Changsha University of Electric Power (Natural Science), 2003, 18 (4): 34- 37. | |
7 | 陈晓东, 姚晓林, 晋飞. 电力系统超短期负荷预测方法分析与研究[J]. 城市建设理论研究(电子版), 2014, (34): 602- 603. |
8 |
程志友, 汪德胜. 基于机器学习与疫情关联特征的短期负荷预测[J]. 电力系统保护与控制, 2022, 50 (23): 1- 8.
DOI |
CHENG Zhiyou, WANG Desheng. Short-term load forecasting based on machine learning and epidemic association features[J]. Power System Protection and Control, 2022, 50 (23): 1- 8.
DOI |
|
9 |
KONG W C, DONG Z Y, JIA Y W, et al. Short-term residential load forecasting based on LSTM recurrent neural network[J]. IEEE Transactions on Smart Grid, 2019, 10 (1): 841- 851.
DOI |
10 | 高明, 郝妍. 基于BiLSTM网络与误差修正的超短期负荷预测[J]. 综合智慧能源, 2023, 45 (1): 31- 40. |
GAO Ming, HAO Yan. Ultra-short-term load forecasting based on BiLSTM network and error correction[J]. Integrated Intelligent Energy, 2023, 45 (1): 31- 40. | |
11 | 李闯, 孔祥玉, 朱石剑, 等. 能源互联环境下考虑需求响应的区域电网短期负荷预测[J]. 电力系统自动化, 2021, 45 (1): 71- 78. |
LI Chuang, KONG Xiangyu, ZHU Shijian, et al. Short-term load forecasting of regional power grid considering demand response in energy interconnection environment[J]. Automation of Electric Power Systems, 2021, 45 (1): 71- 78. | |
12 | KUMAR S, HUSSAIN L, BANARJEE S, et al. Energy load forecasting using deep learning approach-LSTM and GRU in spark cluster[C]//2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT). Kolkata, India. IEEE, 2018: 1–4. |
13 | 陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44 (2): 614- 620. |
CHEN Zhenyu, LIU Jinbo, LI Chen, et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020, 44 (2): 614- 620. | |
14 |
SAJJAD M, AHMAD KHAN Z, ULLAH A, et al. A novel CNN-GRU-based hybrid approach for short-term residential load forecasting[J]. IEEE Access, 2020, 8, 143759- 143768.
DOI |
15 | 曾囿钧, 肖先勇, 徐方维, 等. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54 (9): 17- 23. |
ZENG Youjun, XIAO Xianyong, XU Fangwei, et al. A short-term load forecasting method based on CNN-BiGRU-NN model[J]. Electric Power, 2021, 54 (9): 17- 23. | |
16 | 杨胡萍, 余阳, 汪超, 等. 基于VMD-CNN-BIGRU的电力系统短期负荷预测[J]. 中国电力, 2022, 55 (10): 71- 76. |
YANG Huping, YU Yang, WANG Chao, et al. Short-term load forecasting of power system based on VMD-CNN-BIGRU[J]. Electric Power, 2022, 55 (10): 71- 76. | |
17 | 刘亚珲, 赵倩. 基于聚类经验模态分解的CNN-LSTM超短期电力负荷预测[J]. 电网技术, 2021, 45 (11): 4444- 4451. |
LIU Yahui, ZHAO Qian. Ultra-short-term power load forecasting based on cluster empirical mode decomposition of CNN-LSTM[J]. Power System Technology, 2021, 45 (11): 4444- 4451. | |
18 | 张鹏飞, 胡博, 何金松, 等. 基于时空图卷积网络的短期空间负荷预测方法[J]. 电力系统自动化, 2023, 47 (13): 78- 85. |
ZHANG Pengfei, HU Bo, HE Jinsong, et al. Short-term spatial load forecasting method based on spatio-temporal graph convolutional network[J]. Automation of Electric Power Systems, 2023, 47 (13): 78- 85. | |
19 | 董雷, 陈振平, 韩富佳, 等. 基于图卷积神经网络与K-means聚类的居民用户集群短期负荷预测[J]. 电网技术, 2023, 47 (10): 4291- 4301. |
DONG Lei, CHEN Zhenping, HAN Fujia, et al. Short-term load forecasting of residential user groups based on graph convolutional neural network and K-means clustering[J]. Power System Technology, 2023, 47 (10): 4291- 4301. | |
20 |
SPEARMAN C. The proof and measurement of association between two things[J]. International Journal of Epidemiology, 2010, 39 (5): 1137- 1150.
DOI |
21 |
BARLACCHI G, DE NADAI M, LARCHER R, et al. A multi-source dataset of urban life in the city of Milan and the Province of Trentino[J]. Scientific Data, 2015, 2, 150055.
DOI |
22 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. CoRR, 2016. DOI:10.48550/arXiv.1609.02907. |
23 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. ArXiv e-Prints, 2014: arXiv: 1412.3555. |
24 | 任建吉, 位慧慧, 邹卓霖, 等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50 (8): 108- 116. |
REN Jianji, WEI Huihui, ZOU Zhuolin, et al. Ultra-short-term power load forecasting based on CNN-BiLSTM-Attention[J]. Power System Protection and Control, 2022, 50 (8): 108- 116. | |
25 | 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43 (8): 131- 137. |
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43 (8): 131- 137. |
[1] | 朱沐雨, 马宏忠, 郭鹏宇, 宣文婧. 典型调峰/调频工况下储能电池组荷电状态估计[J]. 中国电力, 2024, 57(6): 18-26. |
[2] | 杨国华, 祁鑫, 贾睿, 刘一峰, 蒙飞, 马鑫, 邢潇文. 基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测[J]. 中国电力, 2024, 57(2): 55-61. |
[3] | 陈子含, 滕伟, 胥学峰, 丁显, 柳亦兵. 基于图卷积网络和风速差分拟合的中长期风功率预测[J]. 中国电力, 2023, 56(10): 96-105. |
[4] | 冯裕祺, 李辉, 李利娟, 周彦博, 谭貌, 彭寒梅. 基于CNN-GRU的光伏电站电压轨迹预测[J]. 中国电力, 2022, 55(7): 163-171. |
[5] | 郑豪丰, 杨国华, 康文军, 刘志远, 刘世涛, 伍弘, 张鸿皓. 基于多负荷特征和TCN-GRU神经网络的负荷预测[J]. 中国电力, 2022, 55(11): 142-148. |
[6] | 杨胡萍, 余阳, 汪超, 李向军, 胡奕涛, 饶楚楚. 基于VMD-CNN-BIGRU的电力系统短期负荷预测[J]. 中国电力, 2022, 55(10): 71-76. |
[7] | 曾囿钧, 肖先勇, 徐方维, 郑林. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||