中国电力 ›› 2023, Vol. 56 ›› Issue (10): 96-105.DOI: 10.11930/j.issn.1004-9649.202303050

• 风电机组及场站主动支撑与运行控制监测关键技术 • 上一篇    下一篇

基于图卷积网络和风速差分拟合的中长期风功率预测

陈子含1(), 滕伟1(), 胥学峰2, 丁显2, 柳亦兵1   

  1. 1. 华北电力大学 电站能量传递转化与系统教育部重点实验室,北京 102206
    2. 中国绿发投资集团有限公司,北京 100020
  • 收稿日期:2023-03-10 出版日期:2023-10-28 发布日期:2023-10-31
  • 作者简介:陈子含(1999—),男,硕士研究生,从事深度学习风功率预测技术研究,E-mail: orczh_hj@163.com
    滕伟(1981—),男,通信作者,博士,教授,从事电力装备的状态监测、故障诊断与寿命预测研究,E-mail: tengw@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(半监督环境下风电机组群的智能化故障诊断与寿命预测,51775186)。

Medium and Long Term Wind Power Prediction Based on Graph Convolutional Network and Wind Velocity Differential Fitting

Zihan CHEN1(), Wei TENG1(), Xuefeng XU2, Xian DING2, Yibing LIU1   

  1. 1. Key Laboratory of Power Station Energy Transfer, Conversion and System, Ministry of Education, North China Electric Power University, Beijing 102206, China
    2. China Green Development Investment Group Co., Ltd., Beijing 100020, China
  • Received:2023-03-10 Online:2023-10-28 Published:2023-10-31
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Intelligent Fault Diagnosis and Life Prediction of Wind Turbine Group under Semi-Supervised Environment, No.51775186).

摘要:

为充分利用数据特征间的先验关系,提高风电场中长期发电功率预测精度,提出一种基于图卷积神经网络(GCN)、风速差分拟合(DF)、粒子群优化算法(PSO)的中长期风功率预测模型。通过分析风力发电全过程,挖掘风功率影响因素及因素间的相互关联性,搭建GCN模型,分别拟合风速和功率利用效率,进一步结合基于DF的风速-功率计算模型计算风功率,模型的损失包含功率损失、风速损失和功率利用效率损失3个部分,采用粒子群优化算法为这3部分损失确定合适的权重。2个风电场的实际算例表明,该模型未来10天风功率预测的相对均方根误差分别为11.44%和13.09%,具有较高的预测精度。

关键词: 风力发电, 风功率预测, 图卷积神经网络, 风速差分拟合, 粒子群优化算法

Abstract:

In order to make full use of the prior relationships among data features and improve the prediction accuracy of medium and long term wind power at wind farms, a medium and long term wind power prediction model based on graph convolution neural network (GCN), wind velocity differential fitting (DF), and particle swarm optimization (PSO) is proposed. By analyzing the whole process of wind power generation, the influencing factors of wind power and the interrelation among them are explored, and the GCN model is built. The wind velocity and power utilization efficiency are fitted respectively. The wind power is calculated by combining with the wind velocity–power calculation model based on DF. The loss of the model includes three parts: power loss, wind velocity loss and power utilization efficiency loss. PSO algorithm is used to determine the appropriate weight for the three losses. The on-site examples of two wind farms show that the relative root mean square error of the wind power prediction model in the next 10 days is 11.44% and 13.09%, respectively, which has a high prediction accuracy.

Key words: wind power generation, wind power prediction, graph convolutional neural network, wind velocity differential fitting, particle swarm optimization algorithm