中国电力 ›› 2023, Vol. 56 ›› Issue (10): 96-105.DOI: 10.11930/j.issn.1004-9649.202303050
• 风电机组及场站主动支撑与运行控制监测关键技术 • 上一篇 下一篇
陈子含1(), 滕伟1(
), 胥学峰2, 丁显2, 柳亦兵1
收稿日期:
2023-03-10
出版日期:
2023-10-28
发布日期:
2023-10-31
作者简介:
陈子含(1999—),男,硕士研究生,从事深度学习风功率预测技术研究,E-mail: orczh_hj@163.com基金资助:
Zihan CHEN1(), Wei TENG1(
), Xuefeng XU2, Xian DING2, Yibing LIU1
Received:
2023-03-10
Online:
2023-10-28
Published:
2023-10-31
Supported by:
摘要:
为充分利用数据特征间的先验关系,提高风电场中长期发电功率预测精度,提出一种基于图卷积神经网络(GCN)、风速差分拟合(DF)、粒子群优化算法(PSO)的中长期风功率预测模型。通过分析风力发电全过程,挖掘风功率影响因素及因素间的相互关联性,搭建GCN模型,分别拟合风速和功率利用效率,进一步结合基于DF的风速-功率计算模型计算风功率,模型的损失包含功率损失、风速损失和功率利用效率损失3个部分,采用粒子群优化算法为这3部分损失确定合适的权重。2个风电场的实际算例表明,该模型未来10天风功率预测的相对均方根误差分别为11.44%和13.09%,具有较高的预测精度。
陈子含, 滕伟, 胥学峰, 丁显, 柳亦兵. 基于图卷积网络和风速差分拟合的中长期风功率预测[J]. 中国电力, 2023, 56(10): 96-105.
Zihan CHEN, Wei TENG, Xuefeng XU, Xian DING, Yibing LIU. Medium and Long Term Wind Power Prediction Based on Graph Convolutional Network and Wind Velocity Differential Fitting[J]. Electric Power, 2023, 56(10): 96-105.
节点类型 | 节点个数 | 关联节点 | ||
时间向量-月份 | 12 | 气温、湿度、空气密度 | ||
时间向量-小时 | 24 | 气温、湿度、空气密度 | ||
气温 | n | 月份、小时、气压梯度 | ||
湿度 | n | 月份、小时、气压梯度 | ||
空气密度 | n | 月份、小时、气压梯度 | ||
气压梯度 | n(n–1)/2 | 气温、湿度、空气密度、 风向、风速 | ||
风向 | 8n | 气压梯度、风速 | ||
风速 | n | 空气密度、气压梯度、风向 |
表 1 GCN图网络节点个数和特征关系
Table 1 Number of nodes and characteristic relation of GCN graph network
节点类型 | 节点个数 | 关联节点 | ||
时间向量-月份 | 12 | 气温、湿度、空气密度 | ||
时间向量-小时 | 24 | 气温、湿度、空气密度 | ||
气温 | n | 月份、小时、气压梯度 | ||
湿度 | n | 月份、小时、气压梯度 | ||
空气密度 | n | 月份、小时、气压梯度 | ||
气压梯度 | n(n–1)/2 | 气温、湿度、空气密度、 风向、风速 | ||
风向 | 8n | 气压梯度、风速 | ||
风速 | n | 空气密度、气压梯度、风向 |
风电场 | 风速/(m·s–1) | 气温/℃ | 湿度/% | 气压/Pa | 天气情况 | |||||
A | 0.41~10.42 | –6.53~7.41 | 24.67~94.52 | 1021.79~1034.56 | 晴、阴、雪、雨 | |||||
B | 0.48~10.70 | –14.95~4.69 | 20.89~93.92 | 850.60~861.31 | 阴、雪、冰雹、晴、扬沙 |
表 2 测试集部分气象数据范围
Table 2 Partial meteorological data range of test set
风电场 | 风速/(m·s–1) | 气温/℃ | 湿度/% | 气压/Pa | 天气情况 | |||||
A | 0.41~10.42 | –6.53~7.41 | 24.67~94.52 | 1021.79~1034.56 | 晴、阴、雪、雨 | |||||
B | 0.48~10.70 | –14.95~4.69 | 20.89~93.92 | 850.60~861.31 | 阴、雪、冰雹、晴、扬沙 |
风电场 | 方法 | ERMS/% | PP/% | |||
A | GCN_DF_PSO | 11.44 | 95.04 | |||
CNN_DF_PSO | 14.38 | 90.11 | ||||
DNN_DF_PSO | 12.14 | 93.66 | ||||
LSTM_DF_PSO | 14.29 | 90.89 | ||||
GCN | 13.81 | 90.28 | ||||
CNN | 13.08 | 91.71 | ||||
DNN | 15.50 | 87.05 | ||||
LSTM | 19.90 | 81.36 | ||||
B | GCN_DF_PSO | 13.09 | 91.76 | |||
CNN_DF_PSO | 14.73 | 90.43 | ||||
DNN_DF_PSO | 16.11 | 87.14 | ||||
LSTM_DF_PSO | 16.23 | 88.24 | ||||
GCN | 16.57 | 86.99 | ||||
CNN | 15.15 | 88.09 | ||||
DNN | 16.45 | 85.93 | ||||
LSTM | 17.85 | 83.99 |
表 3 各方法预测结果评价指标对比
Table 3 Comparison of evaluation index of prediction results of each method
风电场 | 方法 | ERMS/% | PP/% | |||
A | GCN_DF_PSO | 11.44 | 95.04 | |||
CNN_DF_PSO | 14.38 | 90.11 | ||||
DNN_DF_PSO | 12.14 | 93.66 | ||||
LSTM_DF_PSO | 14.29 | 90.89 | ||||
GCN | 13.81 | 90.28 | ||||
CNN | 13.08 | 91.71 | ||||
DNN | 15.50 | 87.05 | ||||
LSTM | 19.90 | 81.36 | ||||
B | GCN_DF_PSO | 13.09 | 91.76 | |||
CNN_DF_PSO | 14.73 | 90.43 | ||||
DNN_DF_PSO | 16.11 | 87.14 | ||||
LSTM_DF_PSO | 16.23 | 88.24 | ||||
GCN | 16.57 | 86.99 | ||||
CNN | 15.15 | 88.09 | ||||
DNN | 16.45 | 85.93 | ||||
LSTM | 17.85 | 83.99 |
1 | 曹钰, 房磊. “双碳”背景下热电机组-储热联合运行消纳弃风策略[J]. 中国电力, 2022, 55 (10): 142- 149, 160. |
CAO Yu, FANG Lei. Combined operation strategy of CHP unit and heat accumulator for eliminate abandoned wind under "double carbon" background[J]. Electric Power, 2022, 55 (10): 142- 149, 160. | |
2 | 吴晓刚, 阎洁, 葛畅, 等. 基于改进GRU-CNN的风光水一体化超短期功率预测方法[J]. 中国电力, 2023, 56 (9): 178- 186, 205. |
WU Xiaogang, YAN Jie, GE Chang, et al. Ultra-short-term power forecasting method for wind-solar-hydro integration based on improved GRU-CNN[J]. Electric Power, 2023, 56 (9): 178- 186, 205. | |
3 | 赵永宁, 李卓, 叶林, 等. 基于时空相关性的风电功率超短期自适应预测方法[J]. 电力系统保护与控制, 2023, 51 (6): 94- 105. |
ZHAO Yongning, LI Zhuo, YE Lin, et al. A very short-term adaptive wind power forecasting method based on spatio-temporal correlation[J]. Power System Protection and Control, 2023, 51 (6): 94- 105. | |
4 |
赵倩, 黄景涛. 基于EMD-SA-SVR的超短期风电功率预测研究[J]. 电力系统保护与控制, 2020, 48 (4): 89- 96.
DOI |
ZHAO Qian, HUANG Jingtao. On ultra-short-term wind power prediction based on EMD-SA-SVR[J]. Power System Protection and Control, 2020, 48 (4): 89- 96.
DOI |
|
5 | 苗长新, 王霞, 李昊, 等. 基于数值天气预报风速误差修正的风电功率日前预测[J]. 电网技术, 2022, 46 (9): 3455- 3464. |
MIAO Changxin, WANG Xia, LI Hao, et al. Day-ahead prediction of wind power based on NWP wind speed error correction[J]. Power System Technology, 2022, 46 (9): 3455- 3464. | |
6 | 陆秋贤, 马刚, 涂孟夫. 基于IEWT-FE-BO-LSTM模型的超短期风功率预测[J]. 水电能源科学, 2023, 41 (1): 217- 220. |
LU Qiuxian, MA Gang, TU Mengfu. Ultra-short-term wind power prediction based on IEWT-FE-BO-LSTM model[J]. Water Resources and Power, 2023, 41 (1): 217- 220. | |
7 | 姜明洋, 徐丽, 张开军, 等. 基于季节指数调整的循环神经网络风速时间序列预测[J]. 太阳能学报, 2022, 43 (2): 444- 450. |
JIANG Mingyang, XU Li, ZHANG Kaijun, et al. Recurrent neural network prediction of wind speed time series based on seasonal exponential adjustment[J]. Acta Energiae Solaris Sinica, 2022, 43 (2): 444- 450. | |
8 |
李金龙, 王义民, 畅建霞, 等. 基于并行机器学习的风功率超短期预测[J]. 水力发电学报, 2023, 42 (1): 40- 51.
DOI |
LI Jinlong, WANG Yimin, CHANG Jianxia, et al. Ultra-short-term wind power prediction based on parallel machine learning[J]. Journal of Hydroelectric Engineering, 2023, 42 (1): 40- 51.
DOI |
|
9 | YUAN C, TANG Y M, MEI R, et al. A PSO-LSTM model of offshore wind power forecast considering the variation of wind speed in second-level time scale[J]. Mathematical Problems in Engineering, 2021, 2021, 1- 9. |
10 |
ZHA W T, LIU J, LI Y L, et al. Ultra-short-term power forecast method for the wind farm based on feature selection and temporal convolution network[J]. ISA Transactions, 2022, 129, 405- 414.
DOI |
11 | 陈海鹏, 李赫, 阚天洋, 等. 考虑风电时序特性的深度小波-时序卷积网络超短期风功率预测[J]. 电网技术, 2023, 47 (4): 1653- 1665. |
CHEN Haipeng, LI He, KAN Tianyang, et al. DWT-DTCNA ultra-short-term wind power prediction considering wind power timing characteristics[J]. Power System Technology, 2023, 47 (4): 1653- 1665. | |
12 | 武新章, 梁祥宇, 朱虹谕, 等. 基于CEEMDAN-GRA-PCC-ATCN的短期风电功率预测[J]. 山东大学学报(工学版), 2022, 52 (6): 146- 156. |
WU Xinzhang, LIANG Xiangyu, ZHU Hongyu, et al. Short-term wind power forecasting based on CEEMDAN-GRA-PCC-ATCN[J]. Journal of Shandong University (Engineering Science), 2022, 52 (6): 146- 156. | |
13 | 马丽. 基于机器学习的中长期风功率预测方法研究[D]. 北京: 华北电力大学, 2020 |
MA Li. Research on medium and long-term wind power prediction method based on machine learning[D]. Beijing: North China Electric Power University, 2020. | |
14 | 何健伟, 曹渝昆. LSTM-RF的中长期风电功率组合预测方法[J]. 上海电力大学学报, 2020, 36 (4): 341- 350. |
HE Jianwei, CAO Yukun. Wind power mid-long term load forecasting based on LSTM-RF combination forecasting method[J]. Journal of Shanghai University of Electric Power, 2020, 36 (4): 341- 350. | |
15 | 李铭. 基于风电场气象数据的风功率预测[D]. 包头: 内蒙古科技大学, 2021. |
LI Ming. Wind power prediction based on meteorological data of wind farm[D]. Baotou: Inner Mongolia University of Science & Technology, 2021. | |
16 | 朱满庭. 基于深度学习的风电功率预测研究[D]. 北京: 华北电力大学, 2021. |
ZHU Manting. Research on wind power prediction based on deep learning[D]. Beijing: North China Electric Power University, 2021. | |
17 |
HAN S, QIAO Y H, YAN J, et al. Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network[J]. Applied Energy, 2019, 239, 181- 191.
DOI |
18 | AHMED S I, RANGANATHAN P, SALEHFAR H. Forecasting of mid- and long-term wind power using machine learning and regression models[C]//2021 IEEE Kansas Power and Energy Conference (KPEC). Manhattan, KS, USA. IEEE, 2021: 1–6. |
19 |
WU Y X, WU Q B, ZHU J Q. Data-driven wind speed forecasting using deep feature extraction and LSTM[J]. IET Renewable Power Generation, 2019, 13 (12): 2062- 2069.
DOI |
20 |
WANG X X, LIU Y R, HOU J C, et al. Medium- and long-term wind-power forecasts, considering regional similarities[J]. Atmosphere, 2023, 14 (3): 430.
DOI |
21 |
孙驷洲, 付敬奇, 朱峰. CGAQPSO优化LSSVM短期风电预测[J]. 电子测量与仪器学报, 2016, 30 (11): 1718- 1725.
DOI |
SUN Sizhou, FU Jingqi, ZHU Feng. Short-term wind power prediction based on LSSVM optimized by chaos Gauss attractor quantum-behaved particle swarm optimization[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30 (11): 1718- 1725.
DOI |
[1] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
[2] | 董福贵, 夏美娟, 李婉莹. 基于PSO-GWO的省级能耗强度预测与碳减排潜力估算[J]. 中国电力, 2023, 56(9): 226-234. |
[3] | 王霄鹤, 杨海超, 宋爽, 杨玉新, 殷贵, 王克. 海上风电场经66 kV海缆送出系统过电压机理[J]. 中国电力, 2023, 56(11): 29-37, 48. |
[4] | 周诗嘉, 杨光源, 彭光强, 武霁阳, 辛清明. 基于多相风力发电系统的容错控制策略研究[J]. 中国电力, 2022, 55(7): 134-141. |
[5] | 刘櫂芮, 贾祺, 严干贵, 翟文超, 孙勇, 李宝聚. 基于惯量响应的双馈风电机组动态协调机理研究[J]. 中国电力, 2022, 55(7): 142-151. |
[6] | 黄书民, 蒋林高, 李志川, 杨光绪, 宋福根. 基于PSO寻优与DBN神经网络的电晕损耗预测[J]. 中国电力, 2022, 55(6): 95-102,214. |
[7] | 李存斌, 董佳. 中国风力发电绩效的区域差异及空间计量分析[J]. 中国电力, 2022, 55(3): 167-176. |
[8] | 沙骏, 徐雨森, 刘冲冲, 冯定东, 胥峥, 臧海祥. 基于变分模态分解和分位数卷积-循环神经网络的短期风功率预测[J]. 中国电力, 2022, 55(12): 61-68. |
[9] | 方日升, 林耀东, 江伟, 黄霆, 徐振华, 吴丹岳, 陈志, 苏毅, 林济铿. 调速侧电力系统稳定器优化设计方法[J]. 中国电力, 2021, 54(9): 74-82. |
[10] | 王奔, 牛洪海, 徐卫峰, 陈俊. 2 MW永磁直驱风机主控系统的设计与应用[J]. 中国电力, 2021, 54(9): 208-220. |
[11] | 游广增, 李华瑞, 李常刚, 刘超, 钱迎春, 李玲芳. 计及风电高频保护的送端电网多直流协同频率控制[J]. 中国电力, 2021, 54(5): 83-90,110. |
[12] | 陈岩, 靳伟, 王文宾, 李会彬, 韩胜峰, 王一鸣, 钟嘉庆. 基于电动汽车分群的“风-网-车”联合消纳调度策略[J]. 中国电力, 2021, 54(4): 107-118. |
[13] | 付红军, 陈惠粉, 赵华, 王凯丰, 鲁宗相, 乔颖. 高渗透率下风电的调频技术研究综述[J]. 中国电力, 2021, 54(1): 104-115. |
[14] | 于国强, 崔晓波, 史毅越, 汤可怡, 张天海. 基于改进群优化算法的深度调峰机组一次调频建模[J]. 中国电力, 2020, 53(6): 147-152. |
[15] | 都嘉慧, 王长江, 李凌, 杨晨光. 计及换流器损耗的风电经柔直并网系统的随机最优潮流模型[J]. 中国电力, 2020, 53(5): 77-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||