[1] 刘畅, 耿林霄, 高林, 等. 凝结水变负荷深度调峰技术实现方法及其经济性评价[J]. 热力发电, 2018, 47(5): 57-62 LIU Chang, GENG Linxiao, GAO Lin, et al. Realization method and economic evaluation of variable load deep peak regulation technology based on condensate water throttling[J]. Thermal Power Generation, 2018, 47(5): 57-62 [2] 林俐, 田欣雨. 基于火电机组分级深度调峰的电力系统经济调度及效益分析[J]. 电网技术, 2017, 41(7): 2255-2262 LIN Li, TIAN Xinyu. Analysis of deep peak regulation and its benefit of thermal units in power system with large scale wind power integrated[J]. Power System Technology, 2017, 41(7): 2255-2262 [3] 章良利, 李敏, 周晓蒙, 等. 深度调峰下燃煤机组运行方式对能耗的影响[J]. 中国电力, 2017, 50(7): 85-89 ZHANG Liangli, LI Min, ZHOU Xiaomeng, et al. Impact of the running modes of coal-fired units on energy consumption in in-depth peak load cycling[J]. Electric Power, 2017, 50(7): 85-89 [4] 高俊如, 侯昭毅, 刘启亮. 菏泽电厂深度调峰运行机组安全经济性分析及改进措施[J]. 热力发电, 2009, 38(10): 48-49, 19 GAO Junru, HOU Zhaoyi, LIU Qiliang. Safety and economic analysis of units used for deep peak regulating operation in Heze Power Plant and retrofit measures thereof[J]. Thermal Power Generation, 2009, 38(10): 48-49, 19 [5] 谷俊杰, 陈顺青. 适用电网稳定性计算的一种超临界汽轮机动态数学模型[J]. 汽轮机技术, 2013, 55(3): 175-177, 184 GU Junjie, CHEN Shunqing. A dynamic mathematical model of supercritical steam turbine for power grid stability calculation[J]. Turbine Technology, 2013, 55(3): 175-177, 184 [6] REPORT I. Dynamic models for steam and hydro turbines in power system studies[J]. IEEE Transactions on Power Apparatus & Systems, 1973, PAS-92(6): 1904-1915. [7] 谷俊杰, 朱伟民. 超临界机组汽轮机调速系统模型参数确定的新方法[J]. 汽轮机技术, 2011, 53(2): 103-106 GU Junjie, ZHU Weimin. A novel method for determine the model parameters supercritical steam turbine[J]. Turbine Technology, 2011, 53(2): 103-106 [8] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]// MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, IEEE, 2002: 39-43. [9] KENNEDY J. Particle swarm optimization[C]//Proceedings of ICNN'95—-International Conference on Neural Networks. Perth, Australia, IEEE, 1995: 1942-1948. [10] 陈璟华, 周俊, 郭壮志, 等. 改进混沌离散粒子群与等微增率的机组组合优化[J]. 中国电力, 2014, 47(7): 6-11 CHEN Jinghua, ZHOU Jun, GUO Zhuangzhi, et al. Commitment based on improved CDPSO algorithm combining equal incremental rate principle[J]. Electric Power, 2014, 47(7): 6-11 [11] 李强, 史元浩, 曾建潮, 等. 基于PSO-Elman神经网络的燃煤机组受热面清洁状态预测[J]. 中国电力, 2019, 52(5): 48-53 LI Qiang, SHI Yuanhao, ZENG Jianchao, et al. Forecast of heating surface cleanliness of coal-fired power plants based on PSO-Elman neural network[J]. Electric Power, 2019, 52(5): 48-53 [12] FAYK M B, NEMR H A E, MOUSSA M M. Particle swarm optimization based video abstraction[J]. Journal of Advanced Research, 2010, 1(2): 163-167. [13] FUKUYAMA Y, YOSHIDA H. A particle swarm optimization for reactive power and voltage control in electrical power systems[C]// Conference on Genetic & Evolutionary Computation. Seoul, South Korea, 1999: 87-93. [14] 李晓枫, 王亚刚. 采用IMC-PID增强超临界机组功率控制的鲁棒性[J]. 中国电力, 2016, 49(6): 20-24 LI Xiaofeng, WANG Yagang. Robustness enhancement of supercritical unit power control with IMC-PID controller[J]. Electric Power, 2016, 49(6): 20-24 [15] 郭瑞君, 张国斌, 纪煜, 等. 基于模糊自适应内模控制的主蒸汽温度控制系统研究[J]. 中国电力, 2018, 51(12): 118-123 GUO Ruijun, ZHANG Guobin, JI Yu, et al. Study on the main steam temperature control system based on fuzzy adaptive internal model control[J]. Electric Power, 2018, 51(12): 118-123 [16] AHMED S, HUANG B, SHAH S L. Novel identification method from step response[J]. Control Engineering Practice, 2007, 15(5): 545-556. |