中国电力 ›› 2023, Vol. 56 ›› Issue (6): 31-39.DOI: 10.11930/j.issn.1004-9649.202208091

• 新能源电力系统稳定性分析与控制技术 • 上一篇    下一篇

基于LSTM神经网络的双馈风机控制参数辨识方法

薛飞1, 李宏强1, 李旭涛1, 徐恒山2   

  1. 1. 国网宁夏电力有限公司电力科学研究院,宁夏 银川 750001;
    2. 三峡大学 电气与新能源学院,湖北 宜昌 443002
  • 收稿日期:2022-08-25 修回日期:2023-04-27 出版日期:2023-06-28 发布日期:2023-07-04
  • 作者简介:薛飞(1994—),男,硕士,工程师,从事新能源发电与并网、电力电子技术及应用研究,E-mail:tjuxf1010@126.com;徐恒山(1989—),男,通信作者,博士,硕士生导师,从事新能源发电与并网、电力电子技术及应用研究,E-mail:xuhengshan@ctgu.edu.cn
  • 基金资助:
    宁夏回族自治区自然科学基金资助项目(2022AAC03612)。

Identification Method for Control Parameters of Doubly-Fed Induction Generator Based on LSTM Neural Network

XUE Fei1, LI Hongqiang1, LI Xutao1, XU Hengshan2   

  1. 1. Electric Power Research Institute of State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750001, China;
    2. College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China
  • Received:2022-08-25 Revised:2023-04-27 Online:2023-06-28 Published:2023-07-04
  • Supported by:
    This work is supported by Natural Science Foundation of Ningxia Hui Autonomous Region (No.2022AAC03612).

摘要: 针对暂态工况下难以高精度获取双馈风机(doubly fed induction generator,DFIG)电磁模型控制参数的问题,提出了一种基于长短期记忆(long short-term memory,LSTM)神经网络的DFIG控制参数高精度辨识方法。首先,利用RT-LAB半实物仿真平台测量并获取DFIG控制器硬件在环数据,并在Plecs平台中搭建DFIG模型的辨识模型;然后,采用Person相关系数法提取出高相关性特征并进行神经网络训练;最后,利用提出的LSTM神经网络对DFIG的控制参数进行辨识,并与实测数据进行对比,验证了所提方法的可行性、有效性和实用性。结果表明,相比于传统辨识方法,所提LSTM神经网络参数辨识方法在暂态工况下可有效提高DFIG电磁模型控制参数的辨识精度。

关键词: 双馈风机, 硬件在环, 参数辨识, 长短时记忆网络, Person相关系数法

Abstract: Since it is difficult to obtain highly accurate control parameters of the electromagnetic model of a doubly-fed induction generator (DFIG) under transient conditions, a high precision identification method for the control parameters of DFIG based on long short-term memory (LSTM) neural network was proposed. Firstly, the RT-LAB hardware-in-the-loop (HIL) simulation platform was used to measure and obtain the HIL data of the DFIG controller, and the identification model of DFIG was built in the Plecs platform. Secondly, the Person correlation coefficient method was used to extract highly correlated features and train the neural network. Finally, the proposed LSTM neural network was used to identify the control parameters of DFIG and compare them with the measured data. As a result, the feasibility, effectiveness, and practicability of the proposed method were verified. The results show that compared with the traditional identification methods, the proposed parameter identification method based on LSTM neural network can effectively improve the identification accuracy of the control parameters of the electromagnetic model of DFIGs under transient conditions.

Key words: doubly-fed induction generator, hard-in-the-loop, parameter identification, long short-term memory network, Person correlation coefficient method