中国电力 ›› 2022, Vol. 55 ›› Issue (5): 39-46.DOI: 10.11930/j.issn.1004-9649.202102032

• 新能源 • 上一篇    下一篇

考虑整机转矩控制的双馈风机轴系扭振机理分析及抑制策略

孙素娟1, 霍乾涛1, 孙立鑫2, 过亮1, 王瑞1, 孔祥梅1   

  1. 1. 国电南瑞科技股份有限公司,江苏 南京 211106;
    2. 国网电力科学研究院有限公司,江苏 南京 211106
  • 收稿日期:2021-02-07 修回日期:2022-03-16 出版日期:2022-05-28 发布日期:2022-05-18
  • 作者简介:孙素娟(1983—),女,硕士,高级工程师,从事新能源并网技术及风电变流器控制技术研究与应用,E-mail:23549919@qq.com
  • 基金资助:
    国家电网有限公司科技项目(柔性直流输电系统运行振荡风险分析及稳定性提升技术研究, 5100-201956024 A-0-0-00)。

Mechanism Analysis and Suppression Strategy of Torsional Vibrations of DFIG Shaft System Considering Torque Control of Wind Turbine

SUN Sujuan1, HUO Qiantao1, SUN Lixin2, GUO Liang1, WANG Rui1, KONG Xiangmei1   

  1. 1. NARI Technology Co., Ltd., Nanjing 211106, China;
    2. State Grid Electric Power Research Institute, Nanjing 211106, China
  • Received:2021-02-07 Revised:2022-03-16 Online:2022-05-28 Published:2022-05-18
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research on Risk Analysis and Stability Improvement Technology of Operation Oscillation in Flexible HVDC Transmission System, No.5100-201956024 A-0-0-00).

摘要: 双馈风电机组轴系模型可等效为风力机质块经柔性轴与发电机质块连接,其轴系柔性较大,阻尼较低,现场存在轴系扭振现象。提出将整机转矩控制嵌入双馈风机两质量块数学模型中,并进行小信号线性化,得到适用于轴系动态特性分析的双馈风电机组机电小信号模型,基于该模型开展扭振机理分析和抑制策略设计。双馈风机轴系扭振本质原因是电磁转矩与发电机转速在扭振频带的相角滞后为90°~270°,等效减小了发电机质块的阻尼甚至使其为负阻尼。通过调整整机转矩控制滞后或增加传动链阻尼,间接实现增加发电机质块阻尼,从而抑制扭振。基于实际双馈风机机械轴系特性搭建模型,对轴系扭振进行时域仿真分析及抑制策略验证,并对现场一台2 MW机组进行抑制效果测试,结果显示:转矩控制调整后轴系振荡被有效抑制。

关键词: 双馈风机, 轴系扭振, 阻尼, 整机转矩控制

Abstract: The shafting model of the doubly-fed induction generator (DFIG) can be equivalent to the wind turbine mass connected to the generator mass via the flexible shaft, and the shaft system has great flexibility and low damping and encounters torsional vibrations on site. Therefore, an electromechanical small-signal model of DFIG is proposed for analyzing the dynamic characteristics of the shaft system. In the model, the torque control of the wind turbine is embedded into the double-mass mathematical model of DFIG, and small signals are linearized. On this basis, this paper analyzes the torsional vibration mechanism and designs the suppression strategy. It is found that the essential reason for torsional vibrations of the shaft system is that the phase angle between the electromagnetic torque and the generator speed in the torsional vibration frequency band registers a lag of 90–270°, which is equivalent to reducing the damping of the generator mass or even make the damping negative. Thus, adjusting the torque control lag of the wind turbine or increasing the damping of the transmission chain can indirectly increase the generator mass damping for the suppression of torsional vibrations. In view of the actual mechanical shafting characteristics of DFIG, a model was built for the time-domain simulation analysis and suppression strategy validation of torsional vibrations, and the suppression effect was tested on a 2MW unit on site. The results reveal that the torsional vibration of the shaft system is effectively suppressed upon the adjustment of torque control.

Key words: doubly-fed induction generator (DFIG), torsional vibration of shaft system, damping, torque control of wind turbine