[1] 潘霄, 陈良, 张明理, 等. 计及新能源消纳成本的多源荷互补规划技术[J]. 南方电网技术, 2022, 16(8): 22–34 PAN Xiao, CHEN Liang, ZHANG Mingli, et al. Multi-source-load complementary planning technology considering of new energy consumption cost[J]. Southern Power System Technology, 2022, 16(8): 22–34 [2] 王素娥, 吴永斌, 熊连松, 等. 基于功频下垂控制的光伏并网发电系统惯量阻尼机理研究[J]. 智慧电力, 2020, 48(12): 20–25,39 WANG Sue, WU Yongbin, XIONG Liansong, et al. Research on inertia and damping mechanism of grid-tied photovoltaic power generation system based on power frequency droop control[J]. Smart Power, 2020, 48(12): 20–25,39 [3] DRAGI?EVI? T, LU X N, VASQUEZ J C, et al. DC microgrids-part II: a review of power architectures, applications, and standardization issues[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3528–3549. [4] YANG B, LI W H, ZHAO Y, et al. Design and analysis of a grid-connected photovoltaic power system[J]. IEEE Transactions on Power Electronics, 2010, 25(4): 992–1000. [5] 杨蕾, 甘维公, 李胜男, 等. DFIG风电机组协同SVG抑制电网低频振荡方法[J]. 中国电力, 2020, 53(11): 175–184,201 YANG Lei, GAN Weigong, LI Shengnan, et al. Method of DFIG cooperating with SVG to suppress low-frequency oscillation in power systems[J]. Electric Power, 2020, 53(11): 175–184,201 [6] PAATERO J V, LUND P D. Effects of large-scale photovoltaic power integration on electricity distribution networks[J]. Renewable Energy, 2007, 32(2): 216–234. [7] DU W, WANG H F, XIAO L Y. Power system small-signal stability as affected by grid-connected photovoltaic generation[J]. European Transactions on Electrical Power, 2012, 22(5): 688–703. [8] GOLSHANI A, BATHAEE S M T, MOGHADDAS-TAFRESHI S M. Small signal stability analysis of photovoltaic array based on averaged switch modeling technique[J]. Journal of Renewable and Sustainable Energy, 2012, 4(4): 043117. [9] EFTEKHARNEJAD S, VITTAL V, HEYDT G T, et al. Impact of increased penetration of photovoltaic generation on power systems[J]. IEEE Transactions on Power Systems, 2013, 28(2): 893–901. [10] SHAH R, MITHULANANTHAN N, SODE-YOME A, et al. Impact of large-scale PV penetration on power system oscillatory stability[C]//IEEE PES General Meeting. Minneapolis, MN, USA. IEEE, 2010: 1–7. [11] 索江镭, 胡志坚, 刘宇凯, 等. 大规模光伏发电并网对互联电力系统阻尼特性的影响及其阻尼控制策略[J]. 西安交通大学学报, 2015, 49(2): 99–105 SUO Jianglei, HU Zhijian, LIU Yukai, et al. Influence of large-scale photovoltaic system integration on damping characteristics of interconnected grid and damping control[J]. Journal of Xi'an Jiaotong University, 2015, 49(2): 99–105 [12] ASSI OBAID Z, CIPCIGAN L M, MUHSSIN M T. Power system oscillations and control: Classifications and PSSs’ design methods: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 839–849. [13] SHAH, MITHULANANTHAN, LEE. Large-scale PV plant with a robust controller considering power oscillation damping[J]. IEEE Transactions on Energy Conversion, 2013, 28(1): 106–116. [14] 葛景, 都洪基, 马进, 等. 基于相关辨识法的大型光伏电站广域阻尼控制器设计[J]. 现代电力, 2017, 34(3): 76–81 GE Jing, DU Hongji, MA Jin, et al. Design of wide-area damping controller for large-scale PV power plants based on correlation identification method[J]. Modern Electric Power, 2017, 34(3): 76–81 [15] LI G J, SUN Y Z, WANG Q, et al. Design of a photo-voltaic system to enhance network dynamic stability[J]. Smart Grid and Renewable Energy, 2010, 1(1): 1–6. [16] ZHU M H, ZHUO F. A novel method for low-frequency oscillation suppression based on PV system[C]//Proceedings of 2014 International Electronics and Application Conference and Exposition. Shanghai, China. IEEE, 2014: 251-254. [17] DAHAL S, MITHULANANTHAN N, SAHA T. An approach to control a photovoltaic generator to damp low frequency oscillations in an emerging distribution system[C]//2011 IEEE Power and Energy Society General Meeting. San Diego, CA. IEEE, 2011: 1–8. [18] 盛师贤, 周鑫, 王德林, 等. 虚拟同步风电场协同光伏电站附加阻尼控制方法[J]. 中国电力, 2022, 55(3): 177–186 SHENG Shixian, ZHOU Xin, WANG Delin, et al. Additional damping cooperative control method of virtual synchronous wind farm and photovoltaic power stations[J]. Electric Power, 2022, 55(3): 177–186 [19] DENG J, XIA N, YIN J G, et al. Small-signal modeling and parameter optimization design for photovoltaic virtual synchronous generator[J]. Energies, 2020, 13(2): 398. [20] PENG S J, LUO A, CHEN Y D, et al. Dual-loop power control for single-phase grid-connected converters with LCL filter[J]. Journal of Power Electronics, 2011, 11(4): 1–8. [21] KUNDUR P, BALU N J, LAUBY M G. Power system stability and control[M]. New York: McGraw-Hill, 1994. [22] POGAKU N, PRODANOVIC M, GREEN T C. Modeling, analysis and testing of autonomous operation of an inverter-based microgrid[J]. IEEE Transactions on Power Electronics, 2007, 22(2): 613–625. [23] 李振垚, 摆世彬, 方若水, 等. 基于广域测量系统的双馈风力发电机组在线参数辨识方法[J]. 南方电网技术, 2021, 15(5): 89–97 LI Zhenyao, BAI Shibin, FANG Ruoshui, et al. Online parameter identification method of doubly fed induction generator based on wide area measurement system[J]. Southern Power System Technology, 2021, 15(5): 89–97 [24] 陈坚, 金涛, 朱星宇, 等. 基于SOGWO的电力系统稳定器参数优化[J]. 电力系统保护与控制, 2020, 48(22): 159–164 CHEN Jian, JIN Tao, ZHU Xingyu, et al. Parameter optimization of a power system stabilizer based on SOGWO[J]. Power System Protection and Control, 2020, 48(22): 159–164 [25] CHENG R, JIN Y C. A social learning particle swarm optimization algorithm for scalable optimization[J]. Information Sciences, 2015, 291: 43–60.
|