[1] 康田雨, 覃智君. 基于超参数优化和双重注意力机制的超短期风电功率预测[J]. 南方电网技术, 2022, 16(5): 44–53 KANG Tianyu, QIN Zhijun. An ultra-short-term wind power forecasting method based on hyperparameter optimization and dual-stage attention mechanism[J]. Southern Power System Technology, 2022, 16(5): 44–53 [2] 冉靖, 张智刚, 梁志峰, 等. 风电场风速和发电功率预测方法综述[J]. 数理统计与管理, 2020, 39(6): 1045–1059 RAN Jing, ZHANG Zhigang, LIANG Zhifeng, et al. Review of wind speed and wind power prediction methods[J]. Journal of Applied Statistics and Management, 2020, 39(6): 1045–1059 [3] ERDEM E, SHI J. ARMA based approaches for forecasting the tuple of wind speed and direction[J]. Applied Energy, 2011, 88(4): 1405–1414. [4] 邹金, 朱继忠, 赖旭, 等. 基于时空自回归移动平均模型的风电出力序列模拟[J]. 电力系统自动化, 2019, 43(3): 101–107 ZOU Jin, ZHU Jizhong, LAI Xu, et al. Simulation of wind power output series based on space-time auto-regressive moving average model[J]. Automation of Electric Power Systems, 2019, 43(3): 101–107 [5] MORSHEDIZADEH M, KORDESTANI M, CARRIVEAU R, et al. Power production prediction of wind turbines using a fusion of MLP and ANFIS networks[J]. IET Renewable Power Generation, 2018, 12(9): 1025–1033. [6] 岳晓宇, 彭显刚, 林俐. 鲸鱼优化支持向量机的短期风电功率预测[J]. 电力系统及其自动化学报, 2020, 32(2): 146–150 YUE Xiaoyu, PENG Xiangang, LIN Li. Short-term wind power forecasting based on whales optimization algorithm and support vector machine[J]. Proceedings of the CSU-EPSA, 2020, 32(2): 146–150 [7] 赵允文, 李鹏, 孙煜皓, 等. 基于相空间重构和随机配置网络的电力负荷短期预测[J]. 电力建设, 2021, 42(9): 120–128 ZHAO Yunwen, LI Peng, SUN Yuhao, et al. Short-term power load forecasting based on phase space reconstruction and stochastic configuration networks[J]. Electric Power Construction, 2021, 42(9): 120–128 [8] 曾囿钧, 肖先勇, 徐方维, 等. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17–23 ZENG Youjun, XIAO Xianyong, XU Fangwei, et al. A short-term load forecasting method based on CNN-BiGRU-NN model[J]. Electric Power, 2021, 54(9): 17–23 [9] WANG K J, QI X X, LIU H D, et al. Deep belief network based k-means cluster approach for short-term wind power forecasting[J]. Energy, 2018, 165: 840–852. [10] 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM & GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47–56,110 JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric Power, 2022, 55(5): 47–56,110 [11] NIU Z W, YU Z Y, TANG W H, et al. Wind power forecasting using attention-based gated recurrent unit network[J]. Energy, 2020, 196: 117081. [12] 黎静华, 骆怡辰, 杨舒惠, 等. 可再生能源电力不确定性预测方法综述[J]. 高电压技术, 2021, 47(4): 1144–1157 LI Jinghua, LUO Yichen, YANG Shuhui, et al. Review of uncertainty forecasting methods for renewable energy power[J]. High Voltage Engineering, 2021, 47(4): 1144–1157 [13] ZHANG Z D, QIN H, LIU Y Q, et al. Wind speed forecasting based on Quantile Regression Minimal Gated Memory Network and Kernel Density Estimation[J]. Energy Conversion and Management, 2019, 196: 1395–1409. [14] WAN C, XU Z, PINSON P, et al. Probabilistic forecasting of wind power generation using extreme learning machine[J]. IEEE Transactions on Power Systems, 2014, 29(3): 1033–1044. [15] 李彬, 彭曙蓉, 彭君哲, 等. 基于深度学习分位数回归模型的风电功率概率密度预测[J]. 电力自动化设备, 2018, 38(9): 15–20 LI Bin, PENG Shurong, PENG Junzhe, et al. Wind power probability density forecasting based on deep learning quantile regression model[J]. Electric Power Automation Equipment, 2018, 38(9): 15–20 [16] PENG X S, WANG H Y, LANG J X, et al. EALSTM-QR: interval wind-power prediction model based on numerical weather prediction and deep learning[J]. Energy, 2021, 220: 119692. [17] 杨锡运, 马雪, 张洋, 等. 基于EMD与加权马尔可夫链QR法的风电功率区间预测[J]. 太阳能学报, 2020, 41(2): 66–72 YANG Xiyun, MA Xue, ZHANG Yang, et al. Probabilistic intervals forecasting of wind power based on EMD weighted Markov chain QR method[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 66–72 [18] 姜贵敏, 陈志军, 李笑竹, 等. 基于EEMD-ACS-LSSVM的短期风电功率预测[J]. 太阳能学报, 2020, 41(5): 77–84 JIANG Guimin, CHEN Zhijun, LI Xiaozhu, et al. Short-term prediction of wind power based on EEMD-ACS-LSSVM[J]. Acta Energiae Solaris Sinica, 2020, 41(5): 77–84 [19] WANG H Z, LI G Q, WANG G B, et al. Deep learning based ensemble approach for probabilistic wind power forecasting[J]. Applied Energy, 2017, 188: 56–70. [20] ZHANG Y C, LIU K P, QIN L, et al. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods[J]. Energy Conversion and Management, 2016, 112: 208–219. [21] 梁智, 孙国强, 李虎成, 等. 基于VMD与PSO优化深度信念网络的短期负荷预测[J]. 电网技术, 2018, 42(2): 598–606 LIANG Zhi, SUN Guoqiang, LI Hucheng, et al. Short-term load forecasting based on VMD and PSO optimized deep belief network[J]. Power System Technology, 2018, 42(2): 598–606 [22] 李文武, 石强, 李丹, 等. 基于VMD和PSO-SVR的短期电力负荷多阶段优化预测[J]. 中国电力, 2022, 55(8): 171–177 LI Wenwu, SHI Qiang, LI Dan, et al. Multi-stage optimization forecast of short-term power load based on VMD and PSO-SVR[J]. Electric Power, 2022, 55(8): 171–177 [23] 臧海祥, 刘冲冲, 滕俊, 等. 基于CNN-GRU分位数回归的短期母线负荷概率密度预测[J]. 智慧电力, 2020, 48(8): 24–30,69 ZANG Haixiang, LIU Chongchong, TENG Jun, et al. Short-term bus load probability density forecasting based on CNN-GRU quantile regression[J]. Smart Power, 2020, 48(8): 24–30,69 [24] 彭华, 王文超, 朱永利, 等. 基于LSTM神经网络的风电场集电线路单相接地智能测距[J]. 电力系统保护与控制, 2021, 49(16): 60–66 PENG Hua, WANG Wenchao, ZHU Yongli, et al. An intelligent single-phase grounding fault location for a wind farm collection line based on an LSTM neural network[J]. Power System Protection and Control, 2021, 49(16): 60–66 [25] 孙宏斌, 张伯明, 相年德. 准稳态灵敏度的分析方法[J]. 中国电机工程学报, 1999, 19(4): 9–13 SUN Hongbin, ZHANG Boming, XIANG Niande. New sensitivity analysis method under quasi steady state for power systems[J]. Proceedings of the CSEE, 1999, 19(4): 9–13
|