中国电力 ›› 2024, Vol. 57 ›› Issue (4): 211-219.DOI: 10.11930/j.issn.1004-9649.202301008
收稿日期:
2023-01-05
出版日期:
2024-04-28
发布日期:
2024-04-26
作者简介:
娄奇鹤(1977—),男,通信作者,博士,高级工程师,从事新能源发展战略、并网管理、经济管理理论和方法研究,E-mai:qihe-lou@sgcc.com.cn基金资助:
Qihe LOU1(), Rongsheng LI2, Jie TAN2, Tiejiang YUAN2(
)
Received:
2023-01-05
Online:
2024-04-28
Published:
2024-04-26
Supported by:
摘要:
目前求取联络线暂态稳定传输功率极限的时域仿真法和基于李雅普诺夫稳定性理论的直接法计算过程复杂,针对此问题,提出基于卷积神经网络的输电断面暂态稳定极限功率计算方法。首先将系统运行的数据与实验仿真数据相结合,转化为输电断面特征属性,选择输电断面关键特征,将其作为神经网络的输入层向量,然后经过多次训练构建出系统关键特征与输电断面暂态稳定极限功率的非线性映射关系。最后以IEEE14节点进行算例分析,验证了计算方法的可靠性以及有效性。
娄奇鹤, 李荣盛, 谭捷, 袁铁江. 基于卷积神经网络的暂稳极限功率计算[J]. 中国电力, 2024, 57(4): 211-219.
Qihe LOU, Rongsheng LI, Jie TAN, Tiejiang YUAN. Calculation of Transient Stability Limit Based on Convolutional Neural Network[J]. Electric Power, 2024, 57(4): 211-219.
故障数 | 样本数 | 训练样本 | 测试样本 | |||||||
数目 | 占比/% | 数目 | 占比/% | |||||||
0 | 100 | 80 | 9.41 | 20 | 2.35 | |||||
1 | 150 | 120 | 14.10 | 30 | 3.53 | |||||
2 | 150 | 120 | 14.10 | 30 | 3.53 | |||||
3 | 100 | 80 | 9.41 | 20 | 2.35 | |||||
4 | 100 | 80 | 9.41 | 20 | 2.35 | |||||
5 | 50 | 40 | 4.71 | 10 | 1.17 | |||||
6 | 50 | 40 | 4.71 | 10 | 1.17 | |||||
7 | 50 | 40 | 4.71 | 10 | 1.17 | |||||
8 | 50 | 40 | 4.71 | 10 | 1.17 | |||||
9 | 50 | 40 | 4.71 | 10 | 1.17 | |||||
总计 | 850 | 680 | 80.00 | 170 | 20.00 |
表 1 数据集样本组成
Table 1 Dataset Composition
故障数 | 样本数 | 训练样本 | 测试样本 | |||||||
数目 | 占比/% | 数目 | 占比/% | |||||||
0 | 100 | 80 | 9.41 | 20 | 2.35 | |||||
1 | 150 | 120 | 14.10 | 30 | 3.53 | |||||
2 | 150 | 120 | 14.10 | 30 | 3.53 | |||||
3 | 100 | 80 | 9.41 | 20 | 2.35 | |||||
4 | 100 | 80 | 9.41 | 20 | 2.35 | |||||
5 | 50 | 40 | 4.71 | 10 | 1.17 | |||||
6 | 50 | 40 | 4.71 | 10 | 1.17 | |||||
7 | 50 | 40 | 4.71 | 10 | 1.17 | |||||
8 | 50 | 40 | 4.71 | 10 | 1.17 | |||||
9 | 50 | 40 | 4.71 | 10 | 1.17 | |||||
总计 | 850 | 680 | 80.00 | 170 | 20.00 |
层 (类型) | 输出类型 | 参数 | ||
conv1D (Conv1D) | (None, 30, 16) | 64 | ||
conv1D_1 (Conv1D) | (None, 28, 16) | 784 | ||
max_pooling1D | (None, 14, 16) | 0 | ||
conv1D_2 (Conv1D) | (None, 12, 64) | 3136 | ||
conv1D_3 (Conv1D) | (None, 10, 64) | 12352 | ||
max_pooling1D_1 | (None, 2, 64) | 0 | ||
flatten (Flatten) | (None, 128) | 0 | ||
dense (Dense) | (None, 1) | 129 |
表 2 卷积网络参数
Table 2 Convolution network parameters
层 (类型) | 输出类型 | 参数 | ||
conv1D (Conv1D) | (None, 30, 16) | 64 | ||
conv1D_1 (Conv1D) | (None, 28, 16) | 784 | ||
max_pooling1D | (None, 14, 16) | 0 | ||
conv1D_2 (Conv1D) | (None, 12, 64) | 3136 | ||
conv1D_3 (Conv1D) | (None, 10, 64) | 12352 | ||
max_pooling1D_1 | (None, 2, 64) | 0 | ||
flatten (Flatten) | (None, 128) | 0 | ||
dense (Dense) | (None, 1) | 129 |
算法 | 断面 | 计算值/MW | 误差/% | |||
人工神经元 | 1 | 48.90 | 1.191 7 | |||
2 | 49.60 | 1.148 6 | ||||
3 | 7.30 | 0.894 3 | ||||
一维卷积 | 1 | 49.00 | 0.573 2 | |||
2 | 49.60 | 0.801 7 | ||||
3 | 7.13 | 0.564 2 |
表 3 断面暂稳极限计算结果
Table 3 Calculation results of interface transient stability limit
算法 | 断面 | 计算值/MW | 误差/% | |||
人工神经元 | 1 | 48.90 | 1.191 7 | |||
2 | 49.60 | 1.148 6 | ||||
3 | 7.30 | 0.894 3 | ||||
一维卷积 | 1 | 49.00 | 0.573 2 | |||
2 | 49.60 | 0.801 7 | ||||
3 | 7.13 | 0.564 2 |
方法 | 故障种类 | 时间/s | 准确度/% | |||
时域仿真法 | 单一故障 | 150.6 | 96.2 | |||
复杂故障 | 356.0 | 94.6 | ||||
人工神经元 | 单一故障 | 123.5 | 89.1 | |||
复杂故障 | 153.2 | 80.3 | ||||
一维卷积 | 单一故障 | 141.2 | 96.3 | |||
复杂故障 | 308.9 | 95.1 |
表 4 IEEE14节点系统暂稳极限功率计算对比
Table 4 Comparison of transient stability calculation for IEEE 14-bus system
方法 | 故障种类 | 时间/s | 准确度/% | |||
时域仿真法 | 单一故障 | 150.6 | 96.2 | |||
复杂故障 | 356.0 | 94.6 | ||||
人工神经元 | 单一故障 | 123.5 | 89.1 | |||
复杂故障 | 153.2 | 80.3 | ||||
一维卷积 | 单一故障 | 141.2 | 96.3 | |||
复杂故障 | 308.9 | 95.1 |
1 | 周强, 汪宁渤, 冉亮, 等. 中国新能源弃风弃光原因分析及前景探究[J]. 中国电力, 2016, 49 (9): 7- 12, 159. |
ZHOU Qiang, WANG Ningbo, RAN Liang, et al. Cause analysis on wind and photovoltaic energy curtailment and prospect research in China[J]. Electric Power, 2016, 49 (9): 7- 12, 159. | |
2 | 李岳. 暂态稳定约束的极限传输能力的快速求取方法研究[D]. 北京: 华北电力大学, 2011. |
LI Yue. Research on the fast calculating method of transient stability constrained power transfer limits[D]. Beijing: North China Electric Power University, 2011. | |
3 | 和敬涵, 罗国敏, 程梦晓, 等. 新一代人工智能在电力系统故障分析及定位中的研究综述[J]. 中国电机工程学报, 2020, 40 (17): 5506- 5516. |
HE Jinghan, LUO Guomin, CHENG Mengxiao, et al. A research review on application of artificial intelligence in power system fault analysis and location[J]. Proceedings of the CSEE, 2020, 40 (17): 5506- 5516. | |
4 | 李永康, 刘宝柱, 胡俊杰. 基于数据驱动与时域仿真融合的电力系统暂态稳定快速评估[J]. 电网技术, 2023, 47 (11): 4386- 4396. |
LI Yongkang, LIU Baozhu, HU Junjie. Rapid evaluation of power system transient stability based on fusion of data-driven and time-domain simulation[J]. Power System Technology, 2023, 47 (11): 4386- 4396. | |
5 | 胡伟, 郑乐, 闵勇, 等. 基于深度学习的电力系统故障后暂态稳定评估研究[J]. 电网技术, 2017, 41 (10): 3140- 3146. |
HU Wei, ZHENG Le, MIN Yong, et al. Research on power system transient stability assessment based on deep learning of big data technique[J]. Power System Technology, 2017, 41 (10): 3140- 3146. | |
6 | 王国政, 郭剑波, 马士聪, 等. 电力系统增强智能分析初探[J]. 中国电机工程学报, 2020, 40 (16): 5079- 5088. |
WANG Guozheng, GUO Jianbo, MA Shicong, et al. Preliminary study of power system enhanced intelligence analysis[J]. Proceedings of the CSEE, 2020, 40 (16): 5079- 5088. | |
7 | 汤奕, 崔晗, 李峰, 等. 人工智能在电力系统暂态问题中的应用综述[J]. 中国电机工程学报, 2019, 39 (1): 2- 13, 315. |
TANG Yi, CUI Han, LI Feng, et al. Review on artificial intelligence in power system transient stability analysis[J]. Proceedings of the CSEE, 2019, 39 (1): 2- 13, 315. | |
8 | 田鹏飞, 于游, 董明, 等. 基于CNN-SVM的高压输电线路故障识别方法[J]. 电力系统保护与控制, 2022, 50 (13): 119- 125. |
TIAN Pengfei, YU You, DONG Ming, et al. A CNN-SVM-based fault identification method for high-voltage transmission lines[J]. Power System Protection and Control, 2022, 50 (13): 119- 125. | |
9 | 杨胡萍, 余阳, 汪超, 等. 基于VMD-CNN-BIGRU的电力系统短期负荷预测[J]. 中国电力, 2022, 55 (10): 71- 76. |
YANG Huping, YU Yang, WANG Chao, et al. Short-term load forecasting of power system based on VMD-CNN-BIGRU[J]. Electric Power, 2022, 55 (10): 71- 76. | |
10 | 高正男, 杨帆, 胡姝博, 等. 面向新能源电力系统状态估计的伪波动数据清洗[J]. 高电压技术, 2022, 48 (6): 2366- 2377. |
GAO Zhengnan, YANG Fan, HU Shubo, et al. Pseudo-fluctuation data cleaning for state estimation of new energy power system[J]. High Voltage Engineering, 2022, 48 (6): 2366- 2377. | |
11 | 曾囿钧, 肖先勇, 徐方维, 等. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54 (9): 17- 23. |
ZENG Youjun, XIAO Xianyong, XU Fangwei, et al. A short-term load forecasting method based on CNN-BiGRU-NN model[J]. Electric Power, 2021, 54 (9): 17- 23. | |
12 | 何成兵, 王润泽, 张霄翔. 基于改进一维卷积神经网络的汽轮发电机组轴系扭振模态参数辨识[J]. 中国电机工程学报, 2020, 40 (S1): 195- 203. |
HE Chengbing, WANG Runze, ZHANG Xiaoxiang. Identification of torsional mode parameters of shaft system of turbo turbine generator sets based on improved one-dimensional convolutional neural network[J]. Proceedings of the CSEE, 2020, 40 (S1): 195- 203. | |
13 | 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55 (5): 47- 56, 110. |
JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric Power, 2022, 55 (5): 47- 56, 110. | |
14 | 周艳真, 吴俊勇, 冀鲁豫, 等. 基于两阶段支持向量机的电力系统暂态稳定预测及预防控制[J]. 中国电机工程学报, 2018, 38 (1): 137- 147, 350. |
ZHOU Yanzhen, WU Junyong, JI Luyu, et al. Two-stage support vector machines for transient stability prediction and preventive control of power systems[J]. Proceedings of the CSEE, 2018, 38 (1): 137- 147, 350. | |
15 | 张若愚. 基于卷积神经网络的电力系统暂态稳定评估[D]. 北京: 北京交通大学, 2020. |
ZHANG Ruoyu. Power system transient stability assessment based on convolution neural network [D]. Beijing: Beijing Jiaotong University, 2020. | |
16 | 时纯, 刘君, 梁卓航, 等. 基于GAN和多通道CNN的电力系统暂态稳定评估[J]. 电网技术, 2022, 46 (8): 3191- 3202. |
SHI Chun, LIU Jun, LIANG Zhuohang, et al. Transient stability assessment of power system based on GAN and multi-channel CNN[J]. Power System Technology, 2022, 46 (8): 3191- 3202. | |
17 |
高昆仑, 杨帅, 刘思言, 等. 基于一维卷积神经网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2019, 43 (12): 18- 26.
DOI |
GAO Kunlun, YANG Shuai, LIU Siyan, et al. Transient stability assessment for power system based on one-dimensional convolutional neural network[J]. Automation of Electric Power Systems, 2019, 43 (12): 18- 26.
DOI |
|
18 | 李楠, 朱嫄, 崔莹. 考虑代价敏感的AC-LSTM暂态稳定评估[J]. 电力系统保护与控制, 2022, 50 (22): 160- 169. |
LI Nan, ZHU Yuan, CUI Ying. AC-LSTM transient stability assessment considering cost-sensitivity[J]. Power System Protection and Control, 2022, 50 (22): 160- 169. | |
19 | 孙黎霞, 白景涛, 周照宇, 等. 基于双向长短期记忆网络的电力系统暂态稳定评估[J]. 电力系统自动化, 2020, 44 (13): 64- 72. |
SUN Lixia, BAI Jingtao, ZHOU Zhaoyu, et al. Transient stability assessment of power system based on bi-directional long-short-term memory network[J]. Automation of Electric Power Systems, 2020, 44 (13): 64- 72. | |
20 | 吴思婕, 王怀远. 基于集成学习的时间自适应电力系统暂态稳定评估方法[J]. 电力系统保护与控制, 2022, 50 (24): 112- 119. |
WU Sijie, WANG Huaiyuan. Transient stability assessment of power system with time-adaptive method based on ensemble learning[J]. Power System Protection and Control, 2022, 50 (24): 112- 119. | |
21 | 苏童, 刘友波, 沈晓东, 等. 深度学习驱动的电力系统暂态稳定预防控制进化算法[J]. 中国电机工程学报, 2020, 40 (12): 3813- 3824. |
SU Tong, LIU Youbo, SHEN Xiaodong, et al. Deep learning-driven evolutionary algorithm for preventive control of power system transient stability[J]. Proceedings of the CSEE, 2020, 40 (12): 3813- 3824. | |
22 | 邵美阳, 吴俊勇, 李宝琴, 等. 基于两阶段集成深度置信网络的电力系统暂态稳定评估[J]. 电网技术, 2020, 44 (5): 1776- 1787. |
SHAO Meiyang, WU Junyong, LI Baoqin, et al. Transient stability assessment of power system based on two-stage ensemble deep belief network[J]. Power System Technology, 2020, 44 (5): 1776- 1787. | |
23 | 朱乔木, 党杰, 陈金富, 等. 基于深度置信网络的电力系统暂态稳定评估方法[J]. 中国电机工程学报, 2018, 38 (3): 735- 743. |
ZHU Qiaomu, DANG Jie, CHEN Jinfu, et al. A method for power system transient stability assessment based on deep belief networks[J]. Proceedings of the CSEE, 2018, 38 (3): 735- 743. | |
24 | 赵恺, 石立宝. 基于改进一维卷积神经网络的电力系统暂态稳定评估[J]. 电网技术, 2021, 45 (8): 2945- 2957. |
ZHAO Kai, SHI Libao. Transient stability assessment of power system based on improved one-dimensional convolutional neural network[J]. Power System Technology, 2021, 45 (8): 2945- 2957. | |
25 | 田芳, 周孝信, 史东宇, 等. 基于卷积神经网络的电力系统暂态稳定预防控制方法[J]. 电力系统保护与控制, 2020, 48 (18): 1- 8. |
TIAN Fang, ZHOU Xiaoxin, SHI Dongyu, et al. A preventive control method of power system transient stability based on a convolutional neural network[J]. Power System Protection and Control, 2020, 48 (18): 1- 8. |
[1] | 刘瑶, 李子恒, 郑子萱, 宋东徽, 李小腾, 张丁, 任杰, 谢琦. 基于短路容量量化评估的断面极限功率解析计算方法[J]. 中国电力, 2025, 58(3): 98-107. |
[2] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
[3] | 周颖, 白雪峰, 王阳, 邱敏, 孙冲, 武亚杰, 李彬. 面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判[J]. 中国电力, 2024, 57(1): 9-17. |
[4] | 王大兴, 宁妍, 汪敬培, 徐洋, 毕峻, 周铭标, 王鹏. 构建新型电力系统背景下的微电网鲁棒简化建模[J]. 中国电力, 2024, 57(1): 148-157. |
[5] | 皮志勇, 朱益, 廖玄, 李振兴, 方豪, 吴沛. 基于深度学习的智能变电站通信链路故障定位方法[J]. 中国电力, 2023, 56(7): 136-145. |
[6] | 陆友文, 崔昊, 陈佳宁, 彭祥佳, 冯双, 刘栋. 基于RA-CNN和同步相量的风电场次/超同步振荡参数智能辨识方法[J]. 中国电力, 2023, 56(4): 46-55,67. |
[7] | 武小琳, 栾凌, 潘连武, 李海龙. 基于LM-CNN的输变电工程造价自动计算模型[J]. 中国电力, 2023, 56(2): 157-163. |
[8] | 陈子含, 滕伟, 胥学峰, 丁显, 柳亦兵. 基于图卷积网络和风速差分拟合的中长期风功率预测[J]. 中国电力, 2023, 56(10): 96-105. |
[9] | 冯裕祺, 李辉, 李利娟, 周彦博, 谭貌, 彭寒梅. 基于CNN-GRU的光伏电站电压轨迹预测[J]. 中国电力, 2022, 55(7): 163-171. |
[10] | 沙骏, 徐雨森, 刘冲冲, 冯定东, 胥峥, 臧海祥. 基于变分模态分解和分位数卷积-循环神经网络的短期风功率预测[J]. 中国电力, 2022, 55(12): 61-68. |
[11] | 樊江川, 于昊正, 刘慧婷, 杨丽君, 安佳坤. 基于多分支门控残差卷积神经网络的短期电力负荷预测[J]. 中国电力, 2022, 55(11): 155-162,174. |
[12] | 杨胡萍, 余阳, 汪超, 李向军, 胡奕涛, 饶楚楚. 基于VMD-CNN-BIGRU的电力系统短期负荷预测[J]. 中国电力, 2022, 55(10): 71-76. |
[13] | 曾囿钧, 肖先勇, 徐方维, 郑林. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17-23. |
[14] | 徐浩, 刘利强, 吕超. 基于迁移学习的配电网内部过电压识别方法[J]. 中国电力, 2021, 54(8): 52-59. |
[15] | 白万荣, 张驯, 朱小琴, 刘吉祥, 程其玉, 赵琰, 邵洁. 基于E-FCNN的电力巡检图像增强[J]. 中国电力, 2021, 54(5): 179-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||