中国电力 ›› 2024, Vol. 57 ›› Issue (4): 211-219.DOI: 10.11930/j.issn.1004-9649.202301008

• 电网 • 上一篇    下一篇

基于卷积神经网络的暂稳极限功率计算

娄奇鹤1(), 李荣盛2, 谭捷2, 袁铁江2()   

  1. 1. 国家电网有限公司,北京 100031
    2. 大连理工大学,辽宁 大连 116081
  • 收稿日期:2023-01-05 出版日期:2024-04-28 发布日期:2024-04-26
  • 作者简介:娄奇鹤(1977—),男,通信作者,博士,高级工程师,从事新能源发展战略、并网管理、经济管理理论和方法研究,E-mai:qihe-lou@sgcc.com.cn
    袁铁江(1975—),男,博士,教授,从事大规模储能与新能源发电并网技术研究,E-mail:ytj1975@dlut.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(高比例新能源区域电网消纳受阻因素智能辨识及辅助决策研究 ,5108-202135033A-0-0-00)。

Calculation of Transient Stability Limit Based on Convolutional Neural Network

Qihe LOU1(), Rongsheng LI2, Jie TAN2, Tiejiang YUAN2()   

  1. 1. State Grid Corporation of China, Beijing 100031, China
    2. Dalian University of Technology, Dalian 116081, China
  • Received:2023-01-05 Online:2024-04-28 Published:2024-04-26
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research on Intelligent Identification and Auxiliary Decision Making of Obstructed Factors in the Consumption of New Energy Regional Power Grids, No.5108-202135033A-0-0-00).

摘要:

目前求取联络线暂态稳定传输功率极限的时域仿真法和基于李雅普诺夫稳定性理论的直接法计算过程复杂,针对此问题,提出基于卷积神经网络的输电断面暂态稳定极限功率计算方法。首先将系统运行的数据与实验仿真数据相结合,转化为输电断面特征属性,选择输电断面关键特征,将其作为神经网络的输入层向量,然后经过多次训练构建出系统关键特征与输电断面暂态稳定极限功率的非线性映射关系。最后以IEEE14节点进行算例分析,验证了计算方法的可靠性以及有效性。

关键词: 卷积神经网络, 输电断面, 暂态稳定极限, 功率计算

Abstract:

Current procedures to calculate transient stability limit of interface tie line power transfer, using either time domain simulation method or direct method based on Lyapunov stability theory, are very time-consuming and complex. In view of this problem, a new method to compute transient stability limit of interface power transmission is proposed based on convolutional neural network. Firstly, the system operation data and the experimental simulation data are combined together to formulate the characteristic attributes of the transmission interface. Then certain key features of the transmission interface are selected as the input layer vector of the neural network. And next the nonlinear mapping relationship between the key features of the system and the transient stability limit of interface power transmission is constructed after multiple rounds of training processes. Finally, the reliability and effectiveness of the proposed calculation method are verified by case studies of IEEE14 bus system.

Key words: convolutional neural network, transmission section, transient stability limit, power calculation