中国电力 ›› 2024, Vol. 57 ›› Issue (1): 9-17.DOI: 10.11930/j.issn.1004-9649.202307100
周颖1(), 白雪峰2(
), 王阳3(
), 邱敏1(
), 孙冲4(
), 武亚杰1(
), 李彬2(
)
收稿日期:
2023-07-26
接受日期:
2023-11-20
出版日期:
2024-01-28
发布日期:
2024-01-23
作者简介:
周颖(1993—),女,硕士,工程师,从事电力电量分析预测研究,E-mail:hgzhouying@163.com基金资助:
Ying ZHOU1(), Xuefeng BAI2(
), Yang WANG3(
), Min QIU1(
), Chong SUN4(
), Yajie WU1(
), Bin LI2(
)
Received:
2023-07-26
Accepted:
2023-11-20
Online:
2024-01-28
Published:
2024-01-23
Supported by:
摘要:
随着极端天气频发,温度敏感负荷用电逐年攀升,温度敏感负荷作为虚拟电厂优质的调控资源,亟须分析气象变化对于此类负荷的影响,由于叠加极端高温、大规模寒潮等异常天气的影响,温度敏感负荷波动剧烈,常规分析预测方法难以适应极端气象场景。针对寒潮天气下温度敏感负荷样本数据及预测精度不足的问题,提出寒潮天气小样本条件下的温度敏感负荷日最大负荷预测方法。该方法先采用时序对抗生成网络(TimeGAN)扩充寒潮期间小样本数据,再采用卷积-长短时记忆神经网络(CNN-LSTM)对寒潮期间的日最大负荷进行预测。以国内某省近两年迎峰度冬期间数据进行模型验证,结果表明所提模型优于其他模型的预测结果,在验证集上日最大负荷的预测精度为99.5%。
周颖, 白雪峰, 王阳, 邱敏, 孙冲, 武亚杰, 李彬. 面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判[J]. 中国电力, 2024, 57(1): 9-17.
Ying ZHOU, Xuefeng BAI, Yang WANG, Min QIU, Chong SUN, Yajie WU, Bin LI. Analysis and Evolution Trend of Temperature-Sensitive Loads for Virtual Power Plant Operation[J]. Electric Power, 2024, 57(1): 9-17.
项目 | 相关系数 | |||||
总负荷 | 温度敏感负荷 | 基础负荷 | ||||
最高温度 | –0.69 | –0.74 | –0.34 | |||
平均温度 | –0.72 | –0.77 | –0.20 | |||
最低温度 | –0.70 | –0.74 | –0.32 | |||
风速 | –0.44 | –0.23 | 0.17 | |||
湿度 | 0.15 | 0.20 | –0.16 | |||
寒湿指数 | 0.70 | 0.67 | 0.35 | |||
体感温度 | –0.75 | –0.78 | –0.28 | |||
人体舒适度 | –0.74 | –0.77 | –0.34 |
表 1 各气象指标与不同负荷相关系数
Table 1 The correlation coefficient between meteorological factors and different loads
项目 | 相关系数 | |||||
总负荷 | 温度敏感负荷 | 基础负荷 | ||||
最高温度 | –0.69 | –0.74 | –0.34 | |||
平均温度 | –0.72 | –0.77 | –0.20 | |||
最低温度 | –0.70 | –0.74 | –0.32 | |||
风速 | –0.44 | –0.23 | 0.17 | |||
湿度 | 0.15 | 0.20 | –0.16 | |||
寒湿指数 | 0.70 | 0.67 | 0.35 | |||
体感温度 | –0.75 | –0.78 | –0.28 | |||
人体舒适度 | –0.74 | –0.77 | –0.34 |
模型方法 | 直接预测总负荷 | 预测温度敏感负荷+ 基础负荷 | ||||||
EMA/(万kW) | EMAP/% | EMA/(万kW) | EMAP/% | |||||
多元线性回归 | 86.11 | 0.99 | 82.68 | 0.96 | ||||
BP神经网络 | 158.88 | 1.82 | 150.06 | 1.74 | ||||
LSTM | 171.19 | 1.95 | 78.20 | 0.91 | ||||
CNN-LSTM | 159.60 | 1.83 | 75.10 | 0.86 | ||||
TimeGAN-CNN-LSTM | 51.20 | 0.59 | 39.98 | 0.46 |
表 2 误差分析
Table 2 Error analysis
模型方法 | 直接预测总负荷 | 预测温度敏感负荷+ 基础负荷 | ||||||
EMA/(万kW) | EMAP/% | EMA/(万kW) | EMAP/% | |||||
多元线性回归 | 86.11 | 0.99 | 82.68 | 0.96 | ||||
BP神经网络 | 158.88 | 1.82 | 150.06 | 1.74 | ||||
LSTM | 171.19 | 1.95 | 78.20 | 0.91 | ||||
CNN-LSTM | 159.60 | 1.83 | 75.10 | 0.86 | ||||
TimeGAN-CNN-LSTM | 51.20 | 0.59 | 39.98 | 0.46 |
1 | 辛保安: 2022年国家电网全年电网投资超5000亿元[EB/OL]. (2023-01-12) [2023-03-12]. http://hn.people.com.cn/GB/n2/2023/0112/c356884-40263848.html. |
2 | 赵建立, 向佳霓, 汤卓凡, 等. 虚拟电厂在上海的实践探索与前景分析[J]. 中国电力, 2023, 56 (2): 1- 13. |
ZHAO Jianli, XIANG Jiani, TANG Zhuofan, et al. Practice exploration and prospect analysis of virtual power plant in Shanghai[J]. Electric Power, 2023, 56 (2): 1- 13. | |
3 |
康重庆, 陈启鑫, 苏剑, 等. 新型电力系统规模化灵活资源虚拟电厂科学问题与研究框架[J]. 电力系统自动化, 2022, 46 (18): 3- 14.
DOI |
KANG Chongqing, CHEN Qixin, SU Jian, et al. Scientific problems and research framework of virtual power plant with enormous flexible distributed energy resources in new power system[J]. Automation of Electric Power Systems, 2022, 46 (18): 3- 14.
DOI |
|
4 |
谢敏, 邓佳梁, 刘明波, 等. 基于气象信息和熵权理论的降温负荷估算方法[J]. 电力系统自动化, 2016, 40 (3): 135- 139.
DOI |
XIE Min, DENG Jialiang, LIU Mingbo, et al. Temperature-lowering load estimation method based on meteorological data and entropy weight theory[J]. Automation of Electric Power Systems, 2016, 40 (3): 135- 139.
DOI |
|
5 | 殷跃. 重庆电网夏季高峰负荷特性分析及优化措施[J]. 宁夏电力, 2021, (5): 28- 33, 43. |
YIN Yue. Characteristic analysis of summer peak load and optimization measures in Chongqing power grid[J]. Ningxia Electric Power, 2021, (5): 28- 33, 43. | |
6 | 史静, 周琪, 谈健, 等. 江苏电网夏季空调负荷特性挖掘与温度敏感性辨识[J]. 电力工程技术, 2018, 37 (3): 28- 32. |
SHI Jing, ZHOU Qi, TAN Jian, et al. The load excavation and temperature sensitivity identification of air conditioning in summer of Jiangsu power grid[J]. Electric Power Engineering Technology, 2018, 37 (3): 28- 32. | |
7 | 袁斌. 陕西电网夏季降温负荷与温度相关性研究[J]. 电网与清洁能源, 2020, 36 (6): 19- 24, 30. |
YUAN Bin. Correlation analysis of cooling load and temperature in Shaanxi power grid in summer[J]. Power System and Clean Energy, 2020, 36 (6): 19- 24, 30. | |
8 | 郭占伍, 张泽亚, 周兴华, 等. 考虑气象因素的电采暖负荷预测研究[J]. 电测与仪表, 2022, 59 (2): 154- 158. |
GUO Zhanwu, ZHANG Zeya, ZHOU Xinghua, et al. Study on forecasting method of electric heating load considering meteorological factors[J]. Electrical Measurement & Instrumentation, 2022, 59 (2): 154- 158. | |
9 | 张航, 杨靖, 李昊霖. 基于改进回归模型的电网降温负荷预测[J]. 控制工程, 2023, 30 (3): 513- 519. |
ZHANG Hang, YANG Jing, LI Haolin. Power grid cooling load forecast based on improved regression model[J]. Control Engineering of China, 2023, 30 (3): 513- 519. | |
10 |
金丽莉, 谭风雷, 吴志坚, 等. 考虑积温效应的负荷预测研究[J]. 电力需求侧管理, 2013, 15 (1): 7- 10, 14.
DOI |
JIN Lili, TAN Fenglei, WU Zhijian, et al. The study of load forecasting accounting accumulated temperature effect[J]. Power Demand Side Management, 2013, 15 (1): 7- 10, 14.
DOI |
|
11 | 董莉娜, 张志劲, 王茂政. 基于历史天气的区域电网负荷预测的研究[J/OL]. 中国测试: 1–7[2023-06-16]. https://kns.cnki.net/kcms/detail/51.1714.TB.20210722.0952.002.html. |
DONG Lina, ZHANG Zhijin, WANG Maozheng. Research on regional power grid load forecasting based on historical weather[J/OL]. China Measurement & Test: 1–7[2023-06-16]. https://kns.cnki.net/kcms/detail/51.1714.TB.20210722.0952.002.html. | |
12 | 苏振宇, 龙勇, 赵丽艳. 基于regARIMA模型的月度负荷预测效果研究[J]. 中国电力, 2018, 51 (5): 166- 171. |
SU Zhenyu, LONG Yong, ZHAO Liyan. Study on the monthly power load forecasting performance based on regARIMA model[J]. Electric Power, 2018, 51 (5): 166- 171. | |
13 | 成丹, 刘静, 郭淳薇, 等. 基于积温效应的华中电网电力负荷预测[J]. 气象科技, 2018, 46 (4): 814- 821. |
CHENG Dan, LIU Jing, GUO Chunwei, et al. Prediction of electric loads over central China based on accumulated temperature effect[J]. Meteorological Science and Technology, 2018, 46 (4): 814- 821. | |
14 | 李晨熙. 基于ARIMA模型的短期电力负荷预测[J]. 吉林电力, 2015, 43 (6): 22- 24. |
LI Chenxi. A short-term load forecasting model based on ARIMA[J]. Jilin Electric Power, 2015, 43 (6): 22- 24. | |
15 |
李明节, 梁志峰, 许涛, 等. 基于敏感气温空间分布的度夏度冬日最大负荷预测与应用研究[J]. 电网技术, 2023, 47 (3): 1088- 1098.
DOI |
LI Mingjie, LIANG Zhifeng, XU Tao, et al. Prediction and application of maximum daily load in summer and winter based on spatial distribution of sensitive temperatures[J]. Power System Technology, 2023, 47 (3): 1088- 1098.
DOI |
|
16 |
CIECHULSKI T, OSOWSKI S. High precision LSTM model for short-time load forecasting in power systems[J]. Energies, 2021, 14 (11): 2983.
DOI |
17 | 贾巍, 黄裕春. 基于小样本数据差分扩容的微电网负荷预测方法[J]. 中国电力, 2023, 56 (8): 151- 156, 165. |
JIA Wei, HUANG Yuchun. Method of load forecasting in microgrid based on differential expansion of small sample data[J]. Electric Power, 2023, 56 (8): 151- 156, 165. | |
18 |
STEADMAN R G. A universal scale of apparent temperature[J]. Journal of Climate and Applied Meteorology, 1984, 23 (12): 1674- 1687.
DOI |
19 | 王汶, 彭爱珺, 张佳丽, 等. 基于体感温度的中国供暖需求分区[J]. 长江流域资源与环境, 2019, 28 (1): 12- 20. |
WANG Wen, PENG Aijun, ZHANG Jiali, et al. Heating demand zoning in China based on apparent temperature[J]. Resources and Environment in the Yangtze Basin, 2019, 28 (1): 12- 20. | |
20 |
王惠中, 刘轲, 周佳. 基于综合气象指数和日期类型的电力系统负荷预测[J]. 电网与清洁能源, 2015, 31 (9): 67- 71.
DOI |
WANG Huizhong, LIU Ke, ZHOU Jia. Power system load forecasting based on comprehensive meteorological index and date type[J]. Power System and Clean Energy, 2015, 31 (9): 67- 71.
DOI |
|
21 | 黄佳. 全天候电网特殊日短期负荷预测建模[D]. 南宁: 广西大学, 2017. |
HUANG Jia. Modeling of power system short-term load forecasting for special day in all-weather[D]. Nanning: Guangxi University, 2017. | |
22 | 许飞. 基于机器学习的短期负荷预测[D]. 广州: 华南理工大学, 2020. |
XU Fei. Short-term load forecasting based on machine learning[D]. Guangzhou: South China University of Technology, 2020. | |
23 | 中国气象局: 寒潮定义和标准[EB/OL]. (2018-11-19) [2023-03-19].https://www.cma.gov.cn/2011xzt/kpbd/ColdWave/2018050901/201811/t20181119_483585.html. |
24 | YOON J , JARRETT D , SCHAAR M . Time-series generative adversarial networks[C]// Neural Information Processing Systems (NeurIPS). 2019. |
25 |
林珊, 王红, 齐林海, 等. 基于条件生成对抗网络的短期负荷预测[J]. 电力系统自动化, 2021, 45 (11): 52- 60.
DOI |
LIN Shan, WANG Hong, QI Linhai, et al. Short-term load forecasting based on conditional generative adversarial network[J]. Automation of Electric Power Systems, 2021, 45 (11): 52- 60.
DOI |
|
26 |
叶林, 李奕霖, 裴铭, 等. 寒潮天气小样本条件下的短期风电功率组合预测[J]. 中国电机工程学报, 2023, 43 (2): 543- 555.
DOI |
YE Lin, LI Yilin, PEI Ming, et al. Combined approach for short-term wind power forecasting under cold weather with small sample[J]. Proceedings of the CSEE, 2023, 43 (2): 543- 555.
DOI |
|
27 | 郭威, 史运涛. 基于空间域图像生成和混合卷积神经网络的配电网故障选线方法[J/OL]. 电网技术: 1–14[2023-03-22]. http://kns.cnki.net/kcms/detail/11.2410.tm.20230310.1705.003.html. |
Guo Wei, Shi Yuntao. A Fault Line Selection Method for Distribution Network Based on Spatial Domain Image Generation and Hybrid Convolutional Neural Network [J/OL]. Power System Technology: 1–14 [2023-03-22]. http://kns.cnki.net/kcms/detail/11.2410.tm.20230310.1705.003.html. | |
28 | 余昊杨, 武昕. 基于一维卷积神经网络的非侵入工业负荷事件检测方法[J]. 计算机应用, 2022, 42 (S2): 277- 284. |
YU Haoyang, WU Xin. Non-invasive industrial load event detection method based on one-dimensional convolutional neural network[J]. Journal of Computer Applications, 2022, 42 (S2): 277- 284. | |
29 |
张未, 余成波, 王士彬, 等. 基于VMD-LSTM-LightGBM的多特征短期电力负荷预测[J]. 南方电网技术, 2023, 17 (2): 74- 81.
DOI |
ZHANG Wei, YU Chengbo, WANG Shibin, et al. Multi-featured short-term power load forecasting based on VMD-LSTM-LightGBM[J]. Southern Power System Technology, 2023, 17 (2): 74- 81.
DOI |
[1] | 李明冰, 李强, 管西洋, 周皓阳, 卢瑞, 冯延坤. 市场环境下考虑多元用户侧资源协同的虚拟电厂低碳优化调度[J]. 中国电力, 2025, 58(2): 66-76. |
[2] | 杨珂, 王栋, 李达, 张王俊, 向尕, 李军. 虚拟电厂网络安全风险评估指标体系构建及量化计算[J]. 中国电力, 2024, 57(8): 130-137. |
[3] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
[4] | 娄奇鹤, 李荣盛, 谭捷, 袁铁江. 基于卷积神经网络的暂稳极限功率计算[J]. 中国电力, 2024, 57(4): 211-219. |
[5] | 仪忠凯, 侯朗博, 徐英, 吴永峰, 李志民, 吴俊飞, 冯腾, 韩柳. 市场环境下灵活性资源虚拟电厂聚合调控关键技术综述[J]. 中国电力, 2024, 57(12): 82-96. |
[6] | 宋天琦, 吕志鹏, 宋振浩, 马韵婷, 张智慧, 周珊, 李昊. 虚拟电厂规模化灵活资源聚合调控框架研究与思考[J]. 中国电力, 2024, 57(1): 2-8. |
[7] | 朱睿, 欧乙丁, 李筱天, 雷星雨, 周宇晴, 张珀扬, 欧睿. 基于外特性等值的虚拟电厂灵活性资源价值评估[J]. 中国电力, 2024, 57(1): 30-39. |
[8] | 谢蒙飞, 马高权, 刘斌, 潘振宁, 商云峰. 基于信息差距决策理论的虚拟电厂报价策略[J]. 中国电力, 2024, 57(1): 40-50. |
[9] | 冯云辰, 加鹤萍, 闫敏, 李根柱, 刘乐, 刘敦楠. 基于风电分时电价的虚拟电厂参与清洁供暖运营优化方法[J]. 中国电力, 2024, 57(1): 51-60. |
[10] | 周挺, 谭玉东, 孙晋, 文明, 廖菁, 李杨, 刘巩, 刘敦楠. 虚拟电厂参与能量与辅助服务市场的协同优化策略[J]. 中国电力, 2024, 57(1): 61-70. |
[11] | 张书涵, 艾芊, 李晓露, 王帝. 适用于多虚拟电厂交易的改进拜占庭容错算法共识机制[J]. 中国电力, 2024, 57(1): 71-81, 157. |
[12] | 张颖, 文艳, 季宇, 左娟, 王文博. 基于目标级联法的虚拟电厂日前调频容量计算方法[J]. 中国电力, 2024, 57(1): 82-90. |
[13] | 张超, 赵冬梅, 季宇, 张颖. 基于改进深度Q网络的虚拟电厂实时优化调度[J]. 中国电力, 2024, 57(1): 91-100. |
[14] | 王世杰, 冯天波, 孙宁, 何可, 李嘉文, 杨程, 崔昊杨. 考虑电-气-热耦合和需求响应的虚拟电厂优化调度策略[J]. 中国电力, 2024, 57(1): 101-114. |
[15] | 王大兴, 宁妍, 汪敬培, 徐洋, 毕峻, 周铭标, 王鹏. 构建新型电力系统背景下的微电网鲁棒简化建模[J]. 中国电力, 2024, 57(1): 148-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||