中国电力 ›› 2024, Vol. 57 ›› Issue (1): 101-114.DOI: 10.11930/j.issn.1004-9649.202309050
王世杰1(), 冯天波2, 孙宁3, 何可1, 李嘉文1, 杨程1, 崔昊杨1(
)
收稿日期:
2023-09-12
接受日期:
2023-11-07
出版日期:
2024-01-28
发布日期:
2024-01-23
作者简介:
王世杰(1998—),男,硕士研究生,从事新能源与电力系统优化运行研究,E-mail:799067980@qq.com基金资助:
Shijie WANG1(), Tianbo FENG2, Ning SUN3, Ke HE1, Jiawen LI1, Cheng YANG1, Haoyang CUI1(
)
Received:
2023-09-12
Accepted:
2023-11-07
Online:
2024-01-28
Published:
2024-01-23
Supported by:
摘要:
热电联产机组以热定电的工作方式无法同时满足冬季供暖效率最大化和电力调峰需求,存在发电出力调节能力不足的问题。针对上述问题,提出了考虑电、气、热能源耦合特性以及需求响应的虚拟电厂优化调度策略。首先,为提升热电联产机组向下调峰能力,引入电制气设备和碳捕集技术,构建新型的热电联产耦合模型。其次,为提升系统运行的灵活性,考虑峰谷分时电价、热价,建立综合需求响应机制。然后,为减少系统发电成本,引入电、热储能装置,以系统总成本和电、热储能运行成本最小化为目标建立虚拟电厂双层优化模型,并根据下层优化模型的KKT(Karush-Kuhn-Tucher,KKT)条件将双层模型转为单层并线性化处理进行求解。结果表明,所提方法的碳排放、运行成本以及新能源消纳率达到最优,提升了热电机组向下调峰能力,满足了系统低碳性、经济性的需求。
王世杰, 冯天波, 孙宁, 何可, 李嘉文, 杨程, 崔昊杨. 考虑电-气-热耦合和需求响应的虚拟电厂优化调度策略[J]. 中国电力, 2024, 57(1): 101-114.
Shijie WANG, Tianbo FENG, Ning SUN, Ke HE, Jiawen LI, Cheng YANG, Haoyang CUI. Optimal Scheduling Strategy for Virtual Power Plant Considering Electricity-Gas-Heat Coupling and Demand Response[J]. Electric Power, 2024, 57(1): 101-114.
项目 | 模式1 | 模式2 | 模式3 | 模式4 | ||||
风电利用率/% | 64.45 | 91.46 | 97.24 | 98.37 | ||||
光伏利用率/% | 65.43 | 74.75 | 100.00 | 100.00 | ||||
碳排放量/t | 1382.65 | 1376.09 | 1246.97 | 1230.24 | ||||
VPP运行成本/元 | 537792.14 | 533556.79 | 435768.54 | 403244.09 | ||||
热电机组成本/元 | 64309.70 | 98940.94 | 81200.49 | 75478.69 | ||||
MT成本/元 | 90435.45 | 97438.67 | 105081.20 | 105175.28 | ||||
电制冷机成本/元 | 16445.10 | 15772.40 | 12509.42 | 11715.27 | ||||
碳交易成本/元 | 43378.30 | 43194.20 | 39135.53 | 38510.22 | ||||
弃风弃光成本/元 | 309780.03 | 112570.50 | 11976.44 | 7055.58 | ||||
购电购气成本/元 | 9346.84 | 3702.28 | 0 | 0 | ||||
VPP系统收益/元 | 3846.18 | 5222.37 | 7752.12 | 9127.76 |
表 1 4种模式调度结果
Table 1 Scheduling results of different methods
项目 | 模式1 | 模式2 | 模式3 | 模式4 | ||||
风电利用率/% | 64.45 | 91.46 | 97.24 | 98.37 | ||||
光伏利用率/% | 65.43 | 74.75 | 100.00 | 100.00 | ||||
碳排放量/t | 1382.65 | 1376.09 | 1246.97 | 1230.24 | ||||
VPP运行成本/元 | 537792.14 | 533556.79 | 435768.54 | 403244.09 | ||||
热电机组成本/元 | 64309.70 | 98940.94 | 81200.49 | 75478.69 | ||||
MT成本/元 | 90435.45 | 97438.67 | 105081.20 | 105175.28 | ||||
电制冷机成本/元 | 16445.10 | 15772.40 | 12509.42 | 11715.27 | ||||
碳交易成本/元 | 43378.30 | 43194.20 | 39135.53 | 38510.22 | ||||
弃风弃光成本/元 | 309780.03 | 112570.50 | 11976.44 | 7055.58 | ||||
购电购气成本/元 | 9346.84 | 3702.28 | 0 | 0 | ||||
VPP系统收益/元 | 3846.18 | 5222.37 | 7752.12 | 9127.76 |
1 | 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架[J]. 电网技术, 2022, 46 (3): 821- 833. |
KANG Chongqing, DU Ershun, LI Yaowang, et al. Key scientific problems and research framework for carbon perspective research of new power systems[J]. Power System Technology, 2022, 46 (3): 821- 833. | |
2 | 王小惠, 何兆禹, 徐超, 等. 斜温层单罐储热同时蓄放热过程动态特性模拟[J]. 中国电机工程学报, 2019, 39 (20): 5989- 5998, 6179. |
WANG Xiaohui, HE Zhaoyu, XU Chao, et al. Dynamic simulations on simultaneous charging/discharging process of water thermocline storage tank[J]. Proceedings of the CSEE, 2019, 39 (20): 5989- 5998, 6179. | |
3 | 陈国平, 董昱, 梁志峰. 能源转型中的中国特色新能源高质量发展分析与思考[J]. 中国电机工程学报, 2020, 40 (17): 5493- 5506. |
CHEN Guoping, DONG Yu, LIANG Zhifeng. Analysis and reflection on high-quality development of new energy with Chinese characteristics in energy transition[J]. Proceedings of the CSEE, 2020, 40 (17): 5493- 5506. | |
4 |
FANG T T, LAHDELMA R. Optimization of combined heat and power production with heat storage based on sliding time window method[J]. Applied Energy, 2016, 162, 723- 732.
DOI |
5 |
LORESTANI A, ARDEHALI M M. Optimization of autonomous combined heat and power system including PVT, WT, storages, and electric heat utilizing novel evolutionary particle swarm optimization algorithm[J]. Renewable Energy, 2018, 119, 490- 503.
DOI |
6 | 袁桂丽, 王琳博, 王宝源. 基于虚拟电厂“热电解耦” 的负荷优化调度及经济效益分析[J]. 中国电机工程学报, 2017, 37 (17): 4974- 4985, 5217. |
YUAN Guili, WANG Linbo, WANG Baoyuan. Optimal dispatch of heat-power load and economy benefit analysis based on decoupling of heat and power of virtual power plant[J]. Proceedings of the CSEE, 2017, 37 (17): 4974- 4985, 5217. | |
7 | 董洁, 乔建强. “双碳” 目标下先进煤炭清洁利用发电技术研究综述[J]. 中国电力, 2022, 55 (8): 202- 212. |
DONG Jie, QIAO Jianqiang. A review on advanced clean coal power generation technology under "carbon peaking and carbon neutrality" goal[J]. Electric Power, 2022, 55 (8): 202- 212. | |
8 | NI L N, LIU W J, WEN F S, et al. Optimal operation of electricity, natural gas and heat systems considering integrated demand responses and diversified storage devices[J]. Journal of Modern Power Systems and Clean Energy, 2018: 423–437. |
9 |
HE L C, LU Z G, ZHANG J F, et al. Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power-to-gas[J]. Applied Energy, 2018, 224, 357- 370.
DOI |
10 |
CLEGG S, MANCARELLA P. Integrated electrical and gas network flexibility assessment in low-carbon multi-energy systems[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (2): 718- 731.
DOI |
11 | 何晓洋, 刘淼, 李健, 等. 基于需求侧响应的区域综合能源系统的低碳经济调度[J]. 高电压技术, 2023, 49 (3): 1140- 1149. |
HE Xiaoyang, LIU Miao, LI Jian, et al. Low-carbon economic dispatch of regional integrated energy system based on demand side response[J]. High Voltage Engineering, 2023, 49 (3): 1140- 1149. | |
12 | 邓盛盛, 陈皓勇, 肖东亮, 等. 发电商参与碳市场与电力中长期市场联合决策模型[J]. 电力系统保护与控制, 2022, 50 (22): 1- 10. |
DENG Shengsheng, CHEN Haoyong, XIAO Dongliang, et al. A joint decision making model for power generators to participate in the carbon market and the medium-and long-term power markets[J]. Power System Protection and Control, 2022, 50 (22): 1- 10. | |
13 | 杨柳, 张超, 蒋勃, 等. 考虑用户满意度的虚拟电厂热电联合低碳经济调度模型[J]. 热力发电, 2019, 48 (9): 40- 45. |
YANG Liu, ZHANG Chao, JIANG Bo, et al. A combined low-carbon economic dispatching model for virtual power plant considering customer satisfaction index[J]. Thermal Power Generation, 2019, 48 (9): 40- 45. | |
14 | 卢志刚, 郭凯, 闫桂红, 等. 考虑需求响应虚拟机组和碳交易的含风电电力系统优化调度[J]. 电力系统自动化, 2017, 41 (15): 58- 65. |
LU Zhigang, GUO Kai, YAN Guihong, et al. Optimal dispatch of power system integrated with wind power considering virtual generator units of demand response and carbon trading[J]. Automation of Electric Power Systems, 2017, 41 (15): 58- 65. | |
15 | 崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42 (16): 5869- 5886, 6163. |
CUI Yang, DENG Guibo, ZENG Peng, et al. Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42 (16): 5869- 5886, 6163. | |
16 | 史喆, 金宇飞, 王勇, 等. 基于用户舒适度区间约束的电热区域综合能源系统优化运行研究[J]. 电力系统保护与控制, 2022, 50 (20): 168- 177. |
SHI Zhe, JIN Yufei, WANG Yong, et al. Optimal operation of an electric heating region integrated energy system based on a user comfort interval constraint[J]. Power System Protection and Control, 2022, 50 (20): 168- 177. | |
17 | 陈家兴, 王春玲, 刘春明. 基于改进碳排放流理论的电力系统动态低碳调度方法[J]. 中国电力, 2023, 56 (3): 162- 172. |
CHEN Jiaxing, WANG Chunling, LIU Chunming. Dynamic low-carbon dispatching method of power system based on improved carbon emission flow theory[J]. Electric Power, 2023, 56 (3): 162- 172. | |
18 | XIONG J J, SUN Y H, WANG J X, et al. Multi-stage equipment optimal configuration of park-level integrated energy system considering flexible loads[J]. International Journal of Electrical Power & Energy Systems, 2022, 140, 108050. |
19 | 钟永洁, 孙永辉, 王庭华, 等. 电热气互联能源系统动态环保经济协同灵活性调度[J]. 电网技术, 2020, 44 (7): 2457- 2469. |
ZHONG Yongjie, SUN Yonghui, WANG Tinghua, et al. Dynamic environmental economic and collaborative flexibility dispatch of integrated power, heat and natural gas energy system[J]. Power System Technology, 2020, 44 (7): 2457- 2469. | |
20 | 邓杰, 姜飞, 王文烨, 等. 考虑电热柔性负荷与氢能精细化建模的综合能源系统低碳运行[J]. 电网技术, 2022, 46 (5): 1692- 1704. |
DENG Jie, JIANG Fei, WANG Wenye, et al. Low-carbon optimized operation of integrated energy system considering electric-heat flexible load and hydrogen energy refined modeling[J]. Power System Technology, 2022, 46 (5): 1692- 1704. | |
21 | CHEN Z X, ZHANG Y J, JI T Y, et al. Coordinated optimal dispatch and market equilibrium of integrated electric power and natural gas networks with P2G embedded[J]. Journal of Modern Power Systems and Clean Energy, 2018: 495–508. |
22 |
SABOORI H, HEMMATI R. Considering carbon capture and storage in electricity generation expansion planning[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (4): 1371- 1378.
DOI |
23 | 孙惠娟, 刘昀, 彭春华, 等. 计及电转气协同的含碳捕集与垃圾焚烧虚拟电厂优化调度[J]. 电网技术, 2021, 45 (9): 3534- 3545. |
SUN Huijuan, LIU Yun, PENG Chunhua, et al. Optimization scheduling of virtual power plant with carbon capture and waste incineration considering power-to-gas coordination[J]. Power System Technology, 2021, 45 (9): 3534- 3545. | |
24 | 袁桂丽, 刘骅骐, 禹建芳, 等. 含碳捕集热电机组的虚拟电厂热电联合优化调度[J]. 中国电机工程学报, 2022, 42 (12): 4440- 4449. |
YUAN Guili, LIU Huaqi, YU Jianfang, et al. Combined heat and power optimal dispatching in virtual power plant with carbon capture cogeneration unit[J]. Proceedings of the CSEE, 2022, 42 (12): 4440- 4449. | |
25 |
YANG D S, TANG Q, ZHOU B W, et al. District energy system modeling and optimal operation considering CHP units dynamic response to wind power ramp events[J]. Sustainable Cities and Society, 2020, 63, 102449.
DOI |
26 |
MA Y M, WANG H X, HONG F, et al. Modeling and optimization of combined heat and power with power-to-gas and carbon capture system in integrated energy system[J]. Energy, 2021, 236, 121392.
DOI |
27 |
THIMMAPURAM P R, KIM J. Consumers' price elasticity of demand modeling with economic effects on electricity markets using an agent-based model[J]. IEEE Transactions on Smart Grid, 2013, 4 (1): 390- 397.
DOI |
28 |
YU S M, FAN Y, ZHU L, et al. Modeling the emission trading scheme from an agent-based perspective: system dynamics emerging from firms’ coordination among abatement options[J]. European Journal of Operational Research, 2020, 286 (3): 1113- 1128.
DOI |
29 | 吴盛军, 李群, 刘建坤, 等. 基于储能电站服务的冷热电多微网系统双层优化配置[J]. 电网技术, 2021, 45 (10): 3822- 3832. |
WU Shengjun, LI Qun, LIU Jiankun, et al. Bi-level optimal configuration for combined cooling heating and power multi-microgrids based on energy storage station service[J]. Power System Technology, 2021, 45 (10): 3822- 3832. | |
30 | FANG X, LI F X, WEI Y L, et al. Strategic scheduling of energy storage for load serving entities in locational marginal pricing market[J]. IET Generation, Transmission & Distribution, 2016, 10 (5): 1258- 1267. |
31 | 李淋, 徐青山, 王晓晴, 等. 基于共享储能电站的工业用户日前优化经济调度[J]. 电力建设, 2020, 41 (5): 100- 107. |
LI Lin, XU Qingshan, WANG Xiaoqing, et al. Optimal economic scheduling of industrial customers on the basis of sharing energy-storage station[J]. Electric Power Construction, 2020, 41 (5): 100- 107. |
[1] | 李明冰, 李强, 管西洋, 周皓阳, 卢瑞, 冯延坤. 市场环境下考虑多元用户侧资源协同的虚拟电厂低碳优化调度[J]. 中国电力, 2025, 58(2): 66-76. |
[2] | 许文俊, 马刚, 姚云婷, 孟宇翔, 李伟康. 考虑绿证-碳交易机制与混氢天然气的工业园区多能优化调度[J]. 中国电力, 2025, 58(2): 154-163. |
[3] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
[4] | 张旭, 王淳, 胡奕涛, 陈锐凯, 刘昆, 郭志东, 钟俊勋. 面向短时过载及长期轻载的配变侧储能配置与调度双层优化[J]. 中国电力, 2025, 58(1): 174-184. |
[5] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
[6] | 杨珂, 王栋, 李达, 张王俊, 向尕, 李军. 虚拟电厂网络安全风险评估指标体系构建及量化计算[J]. 中国电力, 2024, 57(8): 130-137. |
[7] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王文烨, 张帅, 赵凤展. 计及激励型需求响应的低压配电网混合储能优化配置[J]. 中国电力, 2024, 57(6): 90-101. |
[8] | 张彩玲, 王爽, 葛淑娜, 潘登, 张岩, 韩伟, 段文岩. 计及灵活需求响应和碳-绿证交易的综合能源系统优化调度[J]. 中国电力, 2024, 57(5): 14-25. |
[9] | 李方姝, 余昆, 陈星莺, 华昊辰. 碳约束下基于双重博弈的电力零售商售电价格决策优化[J]. 中国电力, 2024, 57(5): 126-136. |
[10] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[11] | 高月芬, 员成博, 孔凡鹏, 王雪松. 需求响应激励下耦合电转气、碳捕集设备的综合能源系统优化[J]. 中国电力, 2024, 57(4): 32-41. |
[12] | 甘润东, 龙玉江, 汤杰, 何熙, 罗鸿轩, 金鑫. 计及负荷时空转移需求响应的数据中心聚合商最优运行策略[J]. 中国电力, 2024, 57(3): 20-26. |
[13] | 梁珩, 黄耕, 侯宾, 杨玺, 罗小虎, 张达. 工业用户连续参与需求响应的用户基线负荷精准计算方法[J]. 中国电力, 2024, 57(3): 34-42. |
[14] | 高志远, 庄卫金, 耿建, 李峰, 薛必克, 杨晓雷, 白柯鞠. 基于经济人假设的负荷侧资源市场化调节作用机理分析[J]. 中国电力, 2024, 57(3): 213-223. |
[15] | 仪忠凯, 侯朗博, 徐英, 吴永峰, 李志民, 吴俊飞, 冯腾, 韩柳. 市场环境下灵活性资源虚拟电厂聚合调控关键技术综述[J]. 中国电力, 2024, 57(12): 82-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||