中国电力 ›› 2025, Vol. 58 ›› Issue (7): 68-79.DOI: 10.11930/j.issn.1004-9649.202407136
• 海上风电制氢技术经济、规划运行及政策机制 • 上一篇 下一篇
高芳杰1(), 孙玉杰2, 李忆3, 乐鹰3, 张继广3, 许传博4(
), 刘敦楠4
收稿日期:
2024-07-31
发布日期:
2025-07-30
出版日期:
2025-07-28
作者简介:
基金资助:
GAO Fangjie1(), SUN Yujie2, LI Yi3, LE Ying3, ZHANG Jiguang3, XU Chuanbo4(
), LIU Dunnan4
Received:
2024-07-31
Online:
2025-07-30
Published:
2025-07-28
Supported by:
摘要:
海上风电制氢技术可为解决偏远海岛用户的用能需求提供可行途径。针对海上风电出力不确定性和海岛供能方式单一的问题,提出一种基于概率盒改进多场景置信间隙决策的计及海上风电制氢的海岛多能微网鲁棒优化调度模型。首先,根据海岛用能实际情况,构建含海上风电制氢系统的海岛多能微网运行框架。然后,在考虑风电出力不确定性和需求响应的基础上,基于概率盒理论和多场景置信间隙决策方法构建海岛多能微网鲁棒优化调度模型,并采用灰狼优化算法进行求解。最后,以广东某海岛为例进行仿真分析。算例结果表明,所提模型能够有效提高风电消纳水平,多能互补有效降低用能成本,更具经济性和环保性。
高芳杰, 孙玉杰, 李忆, 乐鹰, 张继广, 许传博, 刘敦楠. 计及海上风电制氢的海岛多能微网鲁棒优化调度[J]. 中国电力, 2025, 58(7): 68-79.
GAO Fangjie, SUN Yujie, LI Yi, LE Ying, ZHANG Jiguang, XU Chuanbo, LIU Dunnan. Robust Optimization Scheduling of Island Multi-energy Microgrid Considering Offshore Wind Power to Hydrogen[J]. Electric Power, 2025, 58(7): 68-79.
设备名称 | 转换效率 | 容量 | 运维成本/ (元·(kW·h)–1) | |||
电解氢设备 | 0.9 | 0.022 | ||||
氢气压缩机 | 0.9 | 0.040 | ||||
储氢罐 | 充/放气:0.95 | 200 m3 | 0.028 | |||
氢燃料电池 | 电转换:0.3;热转换:0.55 | 500 kW | 0.040 | |||
甲烷反应器 | 0.7 | 500 m3 | 0.040 | |||
掺氢燃气轮机 | 电转换:0.4;热转换:0.35 | 0.011 | ||||
燃气锅炉 | 0.9 | 0.040 | ||||
碳捕集 | 0.9 | 0.050 | ||||
电锅炉 | 0.9 | 0.040 | ||||
电制冷机 | 3 | 0.020 | ||||
吸收式制冷机 | 1.33 | 0.010 | ||||
电储能 | 充/放电:0.9 | 600 kW | 0.050 |
表 1 设备的相关参数
Table 1 The related parameters of the equipment
设备名称 | 转换效率 | 容量 | 运维成本/ (元·(kW·h)–1) | |||
电解氢设备 | 0.9 | 0.022 | ||||
氢气压缩机 | 0.9 | 0.040 | ||||
储氢罐 | 充/放气:0.95 | 200 m3 | 0.028 | |||
氢燃料电池 | 电转换:0.3;热转换:0.55 | 500 kW | 0.040 | |||
甲烷反应器 | 0.7 | 500 m3 | 0.040 | |||
掺氢燃气轮机 | 电转换:0.4;热转换:0.35 | 0.011 | ||||
燃气锅炉 | 0.9 | 0.040 | ||||
碳捕集 | 0.9 | 0.050 | ||||
电锅炉 | 0.9 | 0.040 | ||||
电制冷机 | 3 | 0.020 | ||||
吸收式制冷机 | 1.33 | 0.010 | ||||
电储能 | 充/放电:0.9 | 600 kW | 0.050 |
目标显 著性 水平 | 场景3 | 场景4 | ||||||||||
不确定 性的置 信水平 | 用户成 本/元 | 系统利 润/元 | 不确定 性的置 信水平 | 用户成 本/元 | 系统利 润/元 | |||||||
— | — | — | ||||||||||
0.05 | ||||||||||||
0.10 | ||||||||||||
0.15 |
表 2 考虑风险后的结果
Table 2 The result after considering risk
目标显 著性 水平 | 场景3 | 场景4 | ||||||||||
不确定 性的置 信水平 | 用户成 本/元 | 系统利 润/元 | 不确定 性的置 信水平 | 用户成 本/元 | 系统利 润/元 | |||||||
— | — | — | ||||||||||
0.05 | ||||||||||||
0.10 | ||||||||||||
0.15 |
1 | 丰力, 张莲梅, 韦家佳, 等. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57 (9): 80- 93. |
FENG Li, ZHANG Lianmei, WEI Jiajia , et al. Development & thinking of offshore wind power based on life cycle economic evaluation[J]. Electric Power, 2024, 57 (9): 80- 93. | |
2 | 刘钟淇, 刘耀, 侯金鸣. 以深远海风电为核心的能源岛能源外送经济性分析[J]. 中国电力, 2024, 57 (9): 94- 102. |
LIU Zhongqi, LIU Yao, HOU Jinming. Economic analysis of energy transmission for energy island based on deep-sea offshore wind farms[J]. Electric Power, 2024, 57 (9): 94- 102. | |
3 | 马向辉, 张梓铭, 吴冇, 等. 2 GW海上风电对称单极与对称双极柔直送出方案技术经济性对比[J]. 南方电网技术, 2024, 18 (2): 30- 38. |
MA Xianghui , ZHANG Ziming, WU Mao, et al. Technical and economical comparisons of 2 GW offshore wind power transmission schemes by symmetrical monopole and symmetrical bipolar VSC-HVDC[J]. Southern Power System Technology, 2024, 18 (2): 30- 38. | |
4 |
MAHMOOD H, BLAABJERG F. Autonomous power management of distributed energy storage systems in islanded microgrids[J]. IEEE Transactions on Sustainable Energy, 2022, 13 (3): 1507- 1522.
DOI |
5 | ZHANG X Y, CHEN B, WANG F, et al. Multi-microgrids system reliability assessment considering difference characteristics and inter-connection ability among microgrids[J]. Journal of Electrical Engineering & Technology, 2019, 14 (5): 1957- 1962. |
6 |
陈鸿琳, 刘新苗, 余浩, 等. 基于近似动态规划的海上风电制氢微网实时能量管理策略[J]. 电力建设, 2022, 43 (12): 94- 102.
DOI |
CHEN Honglin, LIU Xinmiao, YU Hao, et al. Real-time energy management strategy based on approximate dynamic programming for offshore wind power-to-hydrogen microgrid[J]. Electric Power Construction, 2022, 43 (12): 94- 102.
DOI |
|
7 |
李梓丘, 乔颖, 鲁宗相. 海上风电-氢能系统运行模式分析及配置优化[J]. 电力系统自动化, 2022, 46 (8): 104- 112.
DOI |
LI Ziqiu, QIAO Ying, LU Zongxiang. Operation mode analysis and configuration optimization of offshore wind-hydrogen system[J]. Automation of Electric Power Systems, 2022, 46 (8): 104- 112.
DOI |
|
8 | 黄冬梅, 陈柯翔, 孙锦中, 等. 含电解制氢装置及光热电站的海岛微网优化调度[J]. 电力系统及其自动化学报, 2022, 34 (11): 24- 31. |
HUANG Dongmei, CHEN Kexiang, SUN Jinzhong, et al. Dispatch optimization of island microgrid with electrolytic hydrogen unit and CSP station[J]. Proceedings of the CSU-EPSA, 2022, 34 (11): 24- 31. | |
9 | 黄冬梅, 吕嘉欣, 时帅, 等. 计及需求响应的海岛微电网群优化运行研究[J]. 电力系统保护与控制, 2024, 52 (9): 88- 98. |
HUANG Dongmei, LÜ Jiaxin, SHI Shuai, et al. Optimal operation of island microgrid clusters considering demand response[J]. Power System Protection and Control, 2024, 52 (9): 88- 98. | |
10 | 张智泉, 陈晓杰, 符杨, 等. 含海上风电制氢的综合能源系统分布鲁棒低碳优化运行[J]. 电网技术, 2025, 49 (1): 41- 51. |
ZHANG Zhiquan, CHEN Xiaojie, FU Yang, et al. Distributionally robust low-carbon optimal operation for integrated energy system including hydrogen production from offshore wind power[J]. Power System Technology, 2025, 49 (1): 41- 51. | |
11 | 张帅龙, 郑可迪, 刘学, 等. 基于藤Copula理论的海上风电建模及电力市场运行分析[J]. 电力系统自动化, 2024, 48 (11): 134- 142. |
ZHANG Shuailong, ZHENG Kedi, LIU Xue, et al. Modeling of offshore wind power based on vine copula theory and electricity market operation analysis[J]. Automation of Electric Power Systems, 2024, 48 (11): 134- 142. | |
12 | 陆秋瑜, 杨银国, 陈俊生, 等. 考虑风电不确定性的海上风电场混合储能容量优化[J]. 南方电网技术, 2025, 19 (2): 115- 123, 134. |
LU Qiuyu, YANG Yinguo, CHEN Junsheng, et al. Hybrid energy storage capacity optimization of offshore wind farms considering wind power uncertainty[J]. Southern Power System Technology, 2025, 19 (2): 115- 123, 134. | |
13 | LI Z L, LI P, XIA J. Dispatching strategy for the multi-energy microgrid with source and load uncertainties[C]//2022 IEEE Symposium Series on Computational Intelligence (SSCI). Singapore, Singapore. IEEE, 2022: 1113–1118. |
14 |
彭春华, 熊志盛, 张艺, 等. 基于多场景置信间隙决策的风光储联合鲁棒规划[J]. 电力系统自动化, 2022, 46 (16): 178- 187.
DOI |
PENG Chunhua, XIONG Zhisheng, ZHANG Yi, et al. Joint robust planning of wind-photovoltaic-energy storage system based on multi-scenario confidence gap decision[J]. Automation of Electric Power Systems, 2022, 46 (16): 178- 187.
DOI |
|
15 | 陈芷欣, 丁家满. 基于概率盒理论的源荷不确定性最优潮流[J]. 电子测量技术, 2021, 44 (7): 61- 68. |
CHEN Zhixin, DING Jiaman. Optimal power flow with source and demand side uncertainty based on probability box theory[J]. Electronic Measurement Technology, 2021, 44 (7): 61- 68. | |
16 |
ZHANG X H, GE S Y, LIU H, et al. Distributionally robust optimization for peer-to-peer energy trading considering data-driven ambiguity sets[J]. Applied Energy, 2023, 331, 120436.
DOI |
17 | 易锦桂, 朱自伟, 谢青. 基于改进场景聚类算法的海上风电储能优化配置研究[J]. 中国电力, 2022, 55 (12): 2- 10. |
YI Jingui, ZHU Ziwei, XIE Qing. Research on optimal configuration of offshore wind power energy storage based on improved scene clustering algorithm[J]. Electric Power, 2022, 55 (12): 2- 10. | |
18 | 闵现娟. 需求响应与碳交易的电氢耦合利用IES经济调度[D]. 北京: 北方工业大学, 2024. |
MIN Xianjuan. Low carbon optimized economic dispatch of hydrogen multi-stage utilization integrated energy system under demand response[D]. Beijing: North China University of Technology, 2024. | |
19 |
GAO J W, GAO F J, MA Z Y, et al. Multi-objective optimization of smart community integrated energy considering the utility of decision makers based on the Lévy flight improved chicken swarm algorithm[J]. Sustainable Cities and Society, 2021, 72, 103075.
DOI |
20 | 杨海柱, 白亚楠, 张鹏, 等. 考虑富氧燃烧碳捕集技术和源荷双侧响应的综合能源系统优化调度[J]. 中国电力, 2024, 57 (8): 227- 240. |
YANG Haizhu, BAI Yanan, ZHANG Peng, et al. Integrated energy system optimal dispatch considering oxy-fuel combustion carbon capture technology and source-load bilateral response[J]. Electric Power, 2024, 57 (8): 227- 240. | |
21 | DING J M, CHEN Z X, DU Y. Probability box theory-based uncertain power flow calculation for power system with wind power[J]. International Journal of Emerging Electric Power Systems, 2022, 22, 243- 253. |
22 | 王娟娟, 王涛, 刘子菡, 等. 考虑风电和负荷不确定性的输电网多目标柔性规划[J]. 中国电力, 2022, 55 (1): 168- 177. |
WANG Juanjuan, WANG Tao, LIU Zihan, et al. Multi-objective flexible planning of transmission network considering wind power and load uncertainties[J]. Electric Power, 2022, 55 (1): 168- 177. | |
23 | 高芳杰. 多源不确定因素下住宅区多能微网优化调度模型研究[D]. 北京: 华北电力大学, 2023. |
GAO Fangjie. Research on optimal scheduling model of residential area multi-energy microgrid under multi-source uncertainties[D]. Beijing: North China Electric Power University, 2023. | |
24 | LIU B D. Uncertainty theory[M]. 2nd ed. Berlin: Springer-Verlag, 2007. |
25 |
MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69, 46- 61.
DOI |
26 | 甘如美江, 傅杰, 汪正, 等. 改进灰狼算法与机器学习混合模型的时间序列预测[J/OL]. 重庆工商大学学报(自然科学版), 1–13. (2024-06-29). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YZZK20240628001&dbname=CJFD&dbcode=CJFQ. |
GAN Ru-mei-jiang, FU Jie, WANG Zheng, et al. Time series prediction of improved grey wolf algorithm and machine learning hybrid model[J/OL]. Journal of Chongqing Technology and Business University (Natural Science Edition), 1–13. (2024-06-29). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=YZZK20240628001&dbname=CJFD&dbcode=CJFQ. | |
27 |
GAO F J, GAO J W, HUANG N B, et al. Multi-objective robust optimization strategy for community virtual cloud power plant considering different demand responses based on correlative confidence gap decision theory[J]. Sustainable Cities and Society, 2023, 97, 104738.
DOI |
28 | 崔杨, 曾鹏, 惠鑫欣, 等. 考虑碳捕集电厂综合灵活运行方式的低碳经济调度[J]. 电网技术, 2021, 45 (5): 1877- 1886. |
CUI Yang, ZENG Peng, HUI Xinxin, et al. Low-carbon economic dispatch considering the integrated flexible operation mode of carbon capture power plant[J]. Power System Technology, 2021, 45 (5): 1877- 1886. | |
29 | 郭梦婕, 严正, 周云, 等. 含风电制氢装置的综合能源系统优化运行[J]. 中国电力, 2020, 53 (1): 115- 123, 161. |
GUO Mengjie, YAN Zheng, ZHOU Yun, et al. Optimized operation design of integrated energy system with wind power hydrogen production[J]. Electric Power, 2020, 53 (1): 115- 123, 161. | |
30 | 徐小圣, 徐昌睿, 李梦诗, 等. 考虑风电消纳的电热联合系统优化调度模型[J]. 南方电网技术, 2024, 18 (11): 106- 118. |
XU Xiaosheng, XU Changrui, LI Mengshi, et al. Optimization dispatching model of the combined heat and power system considering wind power integration[J]. Southern Power System Technology, 2024, 18 (11): 106- 118. |
[1] | 赵均祥, 文中, 王秋杰, 张业伟. 基于富氧燃烧技术的综合能源两阶段鲁棒低碳经济优化[J]. 中国电力, 2025, 58(7): 24-37. |
[2] | 张婕, 花宇飞, 王晨. 基于合作博弈的需求侧调节响应能力共享模型[J]. 中国电力, 2025, 58(6): 45-55. |
[3] | 魏春晖, 单林森, 胡大栋, 高乾恒, 张新松, 薛晓岑. 面向需求响应的园区虚拟电厂优化调度策略[J]. 中国电力, 2025, 58(6): 112-121. |
[4] | 许世杰, 胡邦杰, 赵亮, 王沛. 基于能碳耦合模型的微能源网源荷协同优化调度研究[J]. 中国电力, 2025, 58(4): 1-12. |
[5] | 向世林, 向月, 王晏亮, 卢宇. 计及负载响应特性的多数据中心时空协同运行优化策略[J]. 中国电力, 2025, 58(4): 170-181. |
[6] | 许文俊, 马刚, 姚云婷, 孟宇翔, 李伟康. 考虑绿证-碳交易机制与混氢天然气的工业园区多能优化调度[J]. 中国电力, 2025, 58(2): 154-163. |
[7] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
[8] | 孙东磊, 王宪, 孙毅, 孟祥飞, 张涌琛, 张玉敏. 基于多面体不确定集合的电力系统灵活性量化评估方法[J]. 中国电力, 2024, 57(9): 146-155. |
[9] | 翟苏巍, 李银银, 杜凡, 李文云, 潘凯岩, 梁峻恺. 考虑海量分布式能源接入的配电网分布式无功控制策略[J]. 中国电力, 2024, 57(8): 138-144. |
[10] | 齐彩娟, 陈宝生, 韦冬妮, 杨钊. 考虑主从博弈定价模式的共享储能分布鲁棒优化配置方法研究[J]. 中国电力, 2024, 57(7): 40-53. |
[11] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王文烨, 张帅, 赵凤展. 计及激励型需求响应的低压配电网混合储能优化配置[J]. 中国电力, 2024, 57(6): 90-101. |
[12] | 张彩玲, 王爽, 葛淑娜, 潘登, 张岩, 韩伟, 段文岩. 计及灵活需求响应和碳-绿证交易的综合能源系统优化调度[J]. 中国电力, 2024, 57(5): 14-25. |
[13] | 李咸善, 丁胜彪, 李飞, 李欣. 考虑水电调节费用补偿的风光水联盟优化调度策略[J]. 中国电力, 2024, 57(5): 26-38. |
[14] | 李方姝, 余昆, 陈星莺, 华昊辰. 碳约束下基于双重博弈的电力零售商售电价格决策优化[J]. 中国电力, 2024, 57(5): 126-136. |
[15] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||