中国电力 ›› 2025, Vol. 58 ›› Issue (11): 72-87.DOI: 10.11930/j.issn.1004-9649.202502017
• 高比例新能源区域综合能源系统调度、控制与可靠性研究 • 上一篇 下一篇
文四海1(
), 鲜跃生1(
), 韩杨1, 刘群英2, 陈树恒1(
)
收稿日期:2025-02-11
修回日期:2025-03-08
发布日期:2025-12-01
出版日期:2025-11-28
作者简介:基金资助:
WEN Sihai1(
), XIAN Yuesheng1(
), HAN Yang1, LIU Qunying2, CHEN Shuheng1(
)
Received:2025-02-11
Revised:2025-03-08
Online:2025-12-01
Published:2025-11-28
Supported by:摘要:
针对综合能源系统多物理系统耦合和多利益主体参与运行的特点,为提升含高渗透率新能源的综合能源系统的能源利用率和运营效益,并计及各运行主体的运行诉求,对考虑风光出力不确定性和相关性的一主多从综合能源系统运行优化策略进行了研究。首先,提出了基于混合Copula函数理论的风光出力场景生成方法,得到风光出力的典型日场景。其次,构建面向多用户的综合能源服务商模型,并建立电、热负荷的综合需求响应模型。然后,以综合能源销售部门作为领导者,向用户发布售能价格和需求响应补偿单价;以园区能源聚合部门和储能电站作为跟随者,调节能源耦合转换装置设备出力、园区间的电能交互及储能电站充放能。最后,通过算例研究,证明该方法和策略能有效提升综合能源系统的经济效益。
文四海, 鲜跃生, 韩杨, 刘群英, 陈树恒. 融合风光出力场景生成的综合能源系统主从博弈运行优化策略[J]. 中国电力, 2025, 58(11): 72-87.
WEN Sihai, XIAN Yuesheng, HAN Yang, LIU Qunying, CHEN Shuheng. A Stackelberg Game-based Optimization Strategy for Integrated Energy Systems Incorporating Wind-solar Power Scenario Generation[J]. Electric Power, 2025, 58(11): 72-87.
| 参数 | 时段 | |||||
| 00:00— 07:00 | 08:00— 12:00 | 13:00— 23:00 | ||||
| 配电网购售电价/(元·(kW·h)–1) | 0.31 | 0.64 | 1 | |||
| 园区间购售电价/(元·(kW·h)–1) | 0.19 | 0.42 | 0.67 | |||
| 集中风电场售电价/(元·(kW·h)–1) | 0.25 | 0.53 | 0.84 | |||
| 储能电站购售电价/(元·(kW·h)–1) | 0.26 | 0.54 | 0.85 | |||
| 天然气价/(元·m–3) | 1.8 | 2.9 | 3.8 | |||
表 1 能源分时价格
Table 1 Time-of-use energy prices
| 参数 | 时段 | |||||
| 00:00— 07:00 | 08:00— 12:00 | 13:00— 23:00 | ||||
| 配电网购售电价/(元·(kW·h)–1) | 0.31 | 0.64 | 1 | |||
| 园区间购售电价/(元·(kW·h)–1) | 0.19 | 0.42 | 0.67 | |||
| 集中风电场售电价/(元·(kW·h)–1) | 0.25 | 0.53 | 0.84 | |||
| 储能电站购售电价/(元·(kW·h)–1) | 0.26 | 0.54 | 0.85 | |||
| 天然气价/(元·m–3) | 1.8 | 2.9 | 3.8 | |||
| 设备名称 | 英语缩写 | 能量转换效率 | 运行损耗系数/ (元·(kW·h)–1) | |||
| 燃气轮机 | GT | 0.35 | 0.021 | |||
| 燃气锅炉 | GB | 0.9 | 0.026 | |||
| 余热锅炉 | WHB | 0.68 | 0.016 | |||
| 溴化锂制冷机 | LBAC | 0.72 | 0.013 | |||
| 储能电站 | ESS | 0.98 | 0.013 | |||
| 空调 | AC | 3 | 0.015 | |||
| 光伏机组 | PV | / | 0.039 | |||
| 风电机组 | WT | / | 0.039 | |||
| 配电网 | / | / | 0.003 |
表 2 能量转换耦合设备参数
Table 2 Energy conversion coupling device parameters
| 设备名称 | 英语缩写 | 能量转换效率 | 运行损耗系数/ (元·(kW·h)–1) | |||
| 燃气轮机 | GT | 0.35 | 0.021 | |||
| 燃气锅炉 | GB | 0.9 | 0.026 | |||
| 余热锅炉 | WHB | 0.68 | 0.016 | |||
| 溴化锂制冷机 | LBAC | 0.72 | 0.013 | |||
| 储能电站 | ESS | 0.98 | 0.013 | |||
| 空调 | AC | 3 | 0.015 | |||
| 光伏机组 | PV | / | 0.039 | |||
| 风电机组 | WT | / | 0.039 | |||
| 配电网 | / | / | 0.003 |
| Copula函数类型 | 参数 | 参数估计值 | K-S校验值 | 平方欧式距离和 | AIC | BIC | ||||||||||||
| Gaussian | 0 | 0 | – | – | ||||||||||||||
| Clayton | 1 | 1 | – | – | ||||||||||||||
| Gumbel | 0 | 0 | – | – | ||||||||||||||
| Frank | 0 | 1 | – | – | ||||||||||||||
| Mixed | 0 | 0 | – | – | ||||||||||||||
表 3 光伏机组PV1和PV2的Copula函数模型的参数估算结果以及拟合优度检验结果
Table 3 Parameter estimation results and goodness-of-fit test results of Copula models for PV1 and PV2
| Copula函数类型 | 参数 | 参数估计值 | K-S校验值 | 平方欧式距离和 | AIC | BIC | ||||||||||||
| Gaussian | 0 | 0 | – | – | ||||||||||||||
| Clayton | 1 | 1 | – | – | ||||||||||||||
| Gumbel | 0 | 0 | – | – | ||||||||||||||
| Frank | 0 | 1 | – | – | ||||||||||||||
| Mixed | 0 | 0 | – | – | ||||||||||||||
| 场景类型 | 综合需求响应 | 园区间电能交互 | ||
| 场景1 | × | × | ||
| 场景2 | × | √ | ||
| 场景3 | √ | × | ||
| 场景4 | √ | √ |
表 4 各场景的具体设置
Table 4 Specific settings for each scenario
| 场景类型 | 综合需求响应 | 园区间电能交互 | ||
| 场景1 | × | × | ||
| 场景2 | × | √ | ||
| 场景3 | √ | × | ||
| 场景4 | √ | √ |
| 场景 | 优化 方法 | 用户购能 成本/元 | 园区1 利润/元 | 园区2 利润/元 | 园区3 利润/元 | 需求响应 补偿/元 | 集中风电 场利润/元 | 储能电站 利润/元 | IESP向配电 网购售电 利润/元 | 弃风弃光 惩罚/元 | 购气成本/ 元 | IESP总成 本/元 | IESP总利 润/元 | |||||||||||||
| 1 | A | / | –450.03 | –837.62 | ||||||||||||||||||||||
| 2 | A | / | 225.66 | –817.32 | 502.64 | |||||||||||||||||||||
| 3 | A | –602.11 | ||||||||||||||||||||||||
| 4 | A | 488.55 | 217.97 | |||||||||||||||||||||||
| B | 157.15 | 467.73 | ||||||||||||||||||||||||
| C | 912.44 | 388.92 |
表 5 各场景的经济效益
Table 5 Economic benefits for each scenario
| 场景 | 优化 方法 | 用户购能 成本/元 | 园区1 利润/元 | 园区2 利润/元 | 园区3 利润/元 | 需求响应 补偿/元 | 集中风电 场利润/元 | 储能电站 利润/元 | IESP向配电 网购售电 利润/元 | 弃风弃光 惩罚/元 | 购气成本/ 元 | IESP总成 本/元 | IESP总利 润/元 | |||||||||||||
| 1 | A | / | –450.03 | –837.62 | ||||||||||||||||||||||
| 2 | A | / | 225.66 | –817.32 | 502.64 | |||||||||||||||||||||
| 3 | A | –602.11 | ||||||||||||||||||||||||
| 4 | A | 488.55 | 217.97 | |||||||||||||||||||||||
| B | 157.15 | 467.73 | ||||||||||||||||||||||||
| C | 912.44 | 388.92 |
| 1 |
李振坤, 游胜苒, 李景岳, 等. 计及动态定价机制和需求响应的社区综合能源系统优化运行[J]. 智慧电力, 2025, 53 (9): 56- 63.
DOI |
|
LI Zhenkun, YOU Shengran, LI Jingyue, et al. Optimized operation of community integrated energy systems considering dynamic pricing mechanism and demand response[J]. Smart Power, 2025, 53 (9): 56- 63.
DOI |
|
| 2 | 舒征宇, 方曼琴, 李黄强, 等. 计及季节性碳排的综合能源系统经济优化调度[J]. 智慧电力, 2025, 53 (9): 37- 47. |
| SHU Zhengyu, FANG Manqin, LI Huangqiang, et al. Economic optimal scheduling of integrated energy systems considering seasonal carbon emissions[J]. Smart Power, 2025, 53 (9): 37- 47. | |
| 3 | 李博, 石红晖, 马强, 等. 风电-火电-压缩空气储能综合能源系统运行特性研究[J]. 电力科技与环保, 2024, 40 (2): 168- 177. |
| LI Bo, SHI Honghui, MA Qiang, et al. The operating characteristics research of integrated energy system based on the wind, coal-fired power plant and compressed air energy storage[J]. Electric Power Technology and Environmental Protection, 2024, 40 (2): 168- 177. | |
| 4 |
陈霁, 王冰, 陈玉全, 等. 基于绿证-阶梯碳交易联合机制的综合能源系统多主体协同优化方法[J]. 智慧电力, 2025, 53 (9): 10- 18.
DOI |
|
CHEN Ji, WANG Bing, CHEN Yuquan, et al. A multi-agent collaborative optimization method for integrated energy systems based on green certificate-stepped carbon trading joint mechanism[J]. Smart Power, 2025, 53 (9): 10- 18.
DOI |
|
| 5 |
董龙, 吴世杰, 赵素娟, 等. 考虑碳捕集与电动汽车参与的综合能源系统三层调度优化控制[J]. 智慧电力, 2025, 53 (5): 99- 108.
DOI |
|
DONG Long, WU Shijie, ZHAO Sujuan, et al. Three-layer scheduling optimization control of integrated energy system considering carbon capture and electric vehicle participation[J]. Smart Power, 2025, 53 (5): 99- 108.
DOI |
|
| 6 |
梁涛, 尹晓东, 刘亚祥. 面向投资收益的综合能源系统鲁棒优化配置规划[J]. 中国电力, 2023, 56 (4): 156- 166.
DOI |
|
LIANG Tao, YIN Xiaodong, LIU Yaxiang. Robust optimal configuration planning of integrated energy system for return on investment[J]. Electric Power, 2023, 56 (4): 156- 166.
DOI |
|
| 7 | 李家桐, 谢宁, 王承民, 等. 基于CHP机组碳排放分析的综合能源系统低碳调度优化方法[J]. 智慧电力, 2024, 52 (6): 31- 37,83. |
| LI Jiatong, XIE Ning, WANG Chengmin, et al. Low-carbon dispatch optimization method for integrated energy system based on carbon emission analysis of CHP units[J]. Smart Power, 2024, 52 (6): 31- 37,83. | |
| 8 |
王凌云, 徐健哲, 李世春, 等. 考虑电-气-热需求响应和阶梯式碳交易的综合能源系统低碳经济调度[J]. 智慧电力, 2022, 50 (9): 45- 52.
DOI |
|
WANG Lingyun, XU Jianzhe, LI Shichun, et al. Low carbon economic dispatch of integrated energy system considering electricity-gas-heat demand response and tiered carbon trading[J]. Smart Power, 2022, 50 (9): 45- 52.
DOI |
|
| 9 | NASIRI N, ZEYNALI S, RAVADANEGH S N, et al. A robust decision framework for strategic behaviour of integrated energy service provider with embedded natural gas and power systems in day-ahead wholesale market[J]. IET Generation, Transmission & Distribution, 2022, 16 (3): 561- 579. |
| 10 |
崔明勇, 宣名阳, 卢志刚, 等. 基于合作博弈的多综合能源服务商运行优化策略[J]. 中国电机工程学报, 2022, 42 (10): 3548- 3564.
DOI |
|
CUI Mingyong, XUAN Mingyang, LU Zhigang, et al. Operation optimization strategy of multi integrated energy service companies based on cooperative game theory[J]. Proceedings of the CSEE, 2022, 42 (10): 3548- 3564.
DOI |
|
| 11 | 李鹏, 马溪原, 郭祚刚, 等. 基于双层优化的综合能源服务商博弈策略[J]. 电网技术, 2021, 45 (2): 460- 473. |
| LI Peng, MA Xiyuan, GUO Zuogang, et al. Game strategy of integrated energy service providers based on bi-level optimization[J]. Power System Technology, 2021, 45 (2): 460- 473. | |
| 12 |
陈一鸣, 刘赟静, 王金鑫. 考虑风电出力不确定性的多源联合系统双层优化调度[J]. 东北电力大学学报, 2024, 44 (1): 17- 24.
DOI |
|
CHEN Yiming, LIU Yunjing, WANG Jinxin. Bi-level optimal scheduling of multi-source combined system considering wind power output uncertainty[J]. Journal of Northeast Electric Power University, 2024, 44 (1): 17- 24.
DOI |
|
| 13 |
李新国, 杨轩, 程少靖, 等. 面向多类型用户负荷的需求响应潜力量化评估[J]. 智慧电力, 2024, 52 (9): 56- 64.
DOI |
|
LI Xinguo, YANG Xuan, CHENG Shaojing, et al. Quantitative assessment of demand response potential for various types of user loads[J]. Smart Power, 2024, 52 (9): 56- 64.
DOI |
|
| 14 | 呼斯乐, 王渊, 于源, 等. 考虑风光不确定性与灵活性指标的园区综合能源系统最优调度[J]. 内蒙古电力技术, 2024, 42 (1): 15- 21. |
| HU Sile, WANG Yuan, YU Yuan, et al. Optimal dispatching of integrated energy system in industrial parks considering wind and solar uncertainty and flexibility indicators[J]. Inner Mongolia Electric Power, 2024, 42 (1): 15- 21. | |
| 15 |
高晗, 李正烁. 考虑电转气响应特性与风电出力不确定性的电-气综合能源系统协调调度[J]. 电力自动化设备, 2021, 41 (9): 24- 30.
DOI |
|
GAO Han, LI Zhengshuo. Coordinated scheduling of integrated electricity-gas energy system considering response characteristic of power-to-gas and wind power uncertainty[J]. Electric Power Automation Equipment, 2021, 41 (9): 24- 30.
DOI |
|
| 16 |
韩子娇, 李正文, 张文达, 等. 计及光伏出力不确定性的氢能综合能源系统经济运行策略[J]. 电力自动化设备, 2021, 41 (10): 99- 106.
DOI |
|
HAN Zijiao, LI Zhengwen, ZHANG Wenda, et al. Economic operation strategy of hydrogen integrated energy system considering uncertainty of photovoltaic output power[J]. Electric Power Automation Equipment, 2021, 41 (10): 99- 106.
DOI |
|
| 17 |
陶远超, 覃洪培, 万灿, 等. 基于概率预测的电-热综合能源系统灵活性聚合与优化调度[J]. 电力系统自动化, 2023, 47 (21): 67- 78.
DOI |
|
TAO Yuanchao, QIN Hongpei, WAN Can, et al. Flexibility aggregation and optimal dispatching of integrated electricity-heat energy system based on probabilistic forecasting[J]. Automation of Electric Power Systems, 2023, 47 (21): 67- 78.
DOI |
|
| 18 |
黄宇, 张冰哲, 庞慧珍, 等. 基于混合Copula优化算法的风速预测方法研究[J]. 太阳能学报, 2022, 43 (10): 192- 201.
DOI |
|
HUANG Yu, ZHANG Bingzhe, PANG Huizhen, et al. Research on wind speed forecasting method based on hybrid copula optimization algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43 (10): 192- 201.
DOI |
|
| 19 |
程杉, 魏昭彬, 黄天力, 等. 基于多能互补的热电联供型微网优化运行[J]. 电力系统保护与控制, 2020, 48 (11): 160- 168.
DOI |
|
CHENG Shan, WEI Zhaobin, HUANG Tianli, et al. Multi-energy complementation based optimal operation of a microgrid with combined heat and power[J]. Power System Protection and Control, 2020, 48 (11): 160- 168.
DOI |
|
| 20 |
杨冬锋, 贺子谦, 赵冠雄, 等. 基于混合博弈的综合能源多园区运行策略研究[J]. 智慧电力, 2024, 52 (7): 56- 63.
DOI |
|
YANG Dongfeng, HE Ziqian, ZHAO Guanxiong, et al. Integrated energy multi-community operation strategy based on hybrid game[J]. Smart Power, 2024, 52 (7): 56- 63.
DOI |
|
| 21 |
符杨, 邢馨月, 李振坤, 等. 基于主从博弈的微电网群多阶段鲁棒优化规划[J]. 电力自动化设备, 2022, 42 (4): 1- 8.
DOI |
|
FU Yang, XING Xinyue, LI Zhenkun, et al. Multi-stage robust optimization planning of microgrid clusters based on master-slave game[J]. Electric Power Automation Equipment, 2022, 42 (4): 1- 8.
DOI |
|
| 22 |
叶鹤林, 刘松, 胡剑, 等. 基于IGDT的含光热电站电力系统多源联合调度策略[J]. 电力系统保护与控制, 2021, 49 (23): 35- 43.
DOI |
|
YE Helin, LIU Song, HU Jian, et al. Multi-source joint dispatching strategy for a power system with concentrating solar power plants based on IGDT[J]. Power System Protection and Control, 2021, 49 (23): 35- 43.
DOI |
|
| 23 |
江岳文, 赵婉婷. 基于IGDT的地区型电热气市场分层迭代交易研究[J]. 电网技术, 2022, 46 (3): 956- 973.
DOI |
|
JIANG Yuewen, ZHAO Wanting. Stratified iterative trading of local multi-energy market based on IGDT[J]. Power System Technology, 2022, 46 (3): 956- 973.
DOI |
|
| 24 |
唐锦, 张书怡, 吴秋伟, 等. 基于Copula函数与等概率逆变换的风电出力场景生成方法[J]. 电力工程技术, 2021, 40 (6): 86- 94.
DOI |
|
TANG Jin, ZHANG Shuyi, WU Qiuwei, et al. Wind power output scenario generation method based on Copula function and equal probability inverse transformation[J]. Electric Power Engineering Technology, 2021, 40 (6): 86- 94.
DOI |
|
| 25 |
YUAN G L, ZHAO X, LIU K J, et al. An adaptive projection BFGS method for nonconvex unconstrained optimization problems[J]. Numerical Algorithms, 2024, 95 (4): 1747- 1767.
DOI |
| 26 |
艾欣, 陈政琦, 孙英云, 等. 基于需求响应的电-热-气耦合系统综合直接负荷控制协调优化研究[J]. 电网技术, 2019, 43 (4): 1160- 1171.
DOI |
|
AI Xin, CHEN Zhengqi, SUN Yingyun, et al. Study on integrated DLC coordination optimization of electric-thermal-gas coupling system considering demand response[J]. Power System Technology, 2019, 43 (4): 1160- 1171.
DOI |
|
| 27 |
向恩民, 高红均, 刘畅, 等. 基于供需双侧博弈互动的园区多能运营商能源交易优化决策[J]. 中国电机工程学报, 2021, 41 (8): 2744- 2757.
DOI |
|
XIANG Enmin, GAO Hongjun, LIU Chang, et al. Optimal decision of energy trading for community multi-energy operator based on game interaction with supply and demand sides[J]. Proceedings of the CSEE, 2021, 41 (8): 2744- 2757.
DOI |
|
| 28 |
张海静, 杨雍琦, 赵昕, 等. 计及需求响应的区域综合能源系统双层优化调度策略[J]. 中国电力, 2021, 54 (4): 141- 150.
DOI |
|
ZHANG Haijing, YANG Yongqi, ZHAO Xin, et al. Two-level optimal dispatching strategy for regional integrated energy system considering demand response[J]. Electric Power, 2021, 54 (4): 141- 150.
DOI |
| [1] | 王世谦, 韩丁, 王楠, 白宏坤, 宋大为, 胡彩红. 基于双层主从博弈的主动配电网协同调度[J]. 中国电力, 2025, 58(9): 105-114. |
| [2] | 姜通海, 王峰, 刘子琪, 单帅杰. 基于改进生成对抗网络的风光气象资源联合场景生成方法[J]. 中国电力, 2025, 58(3): 183-192. |
| [3] | 罗萍萍, 盛奥, 林济铿, 王忠岳, 李启本, 周平. 基于CGAN台风气象下负荷场景生成[J]. 中国电力, 2025, 58(2): 176-185. |
| [4] | 许文俊, 马刚, 姚云婷, 孟宇翔, 李伟康. 考虑绿证-碳交易机制与混氢天然气的工业园区多能优化调度[J]. 中国电力, 2025, 58(2): 154-163. |
| [5] | 潘廷哲, 靳丰源, 陆泳昊, 曹望璋, 阳浩, 于鹤洋, 赵勃扬. 智能小区电动汽车充电动态电价策略设计[J]. 中国电力, 2025, 58(11): 14-24, 37. |
| [6] | 杨新桥, 加鹤萍, 李培军, 李顺, 龙羿, 刘敦楠, 黄辉. 动态电价下计及能量回收的电动汽车负荷时空引导策略[J]. 中国电力, 2025, 58(11): 122-134. |
| [7] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
| [8] | 齐彩娟, 陈宝生, 韦冬妮, 杨钊. 考虑主从博弈定价模式的共享储能分布鲁棒优化配置方法研究[J]. 中国电力, 2024, 57(7): 40-53. |
| [9] | 李咸善, 丁胜彪, 李飞, 李欣. 考虑水电调节费用补偿的风光水联盟优化调度策略[J]. 中国电力, 2024, 57(5): 26-38. |
| [10] | 李丹, 梁云嫣, 缪书唯, 方泽仁, 胡越, 贺帅. 基于高斯混合聚类和改进条件变分自编码的多风电场功率日场景生成方法[J]. 中国电力, 2024, 57(12): 17-29. |
| [11] | 齐彩娟, 车彬, 杨燕, 陈宝生. 考虑新能源消纳与储能参与调频的共享储能主从博弈鲁棒定价方法[J]. 中国电力, 2023, 56(8): 26-39. |
| [12] | 郭之栋, 胡存刚, 芮涛, 罗魁, 林振锋. 基于动态电价机制的用户侧分布式储能电能交易策略[J]. 中国电力, 2023, 56(1): 28-37. |
| [13] | 潘瑞媛, 唐忠, 史晨豪, 魏敏捷, 李安, 戴尉阳. 基于主从博弈的多主体投资多微网系统优化配置[J]. 中国电力, 2022, 55(6): 65-73,127. |
| [14] | 田福银, 马骏, 王灿, 李欣然, 王傲奇, 褚四虎, 凌凯, 张羽, 甘友春. 基于双层主从博弈的综合能源系统多主体低碳经济运行策略[J]. 中国电力, 2022, 55(11): 184-193. |
| [15] | 苏晨博, 刘崇茹, 徐诗甜, 岳昊. 利用贝叶斯线性回归结合混合Copula函数分析风电功率的相关性[J]. 中国电力, 2021, 54(8): 182-189. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编