中国电力 ›› 2024, Vol. 57 ›› Issue (5): 26-38.DOI: 10.11930/j.issn.1004-9649.202308001

• 新型电力系统源网荷储灵活资源运营及关键技术 • 上一篇    下一篇

考虑水电调节费用补偿的风光水联盟优化调度策略

李咸善1,2(), 丁胜彪1(), 李飞1,2, 李欣1,2()   

  1. 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002
    2. 梯级水电站运行与控制湖北省重点实验室(三峡大学),湖北 宜昌 443002
  • 收稿日期:2023-08-01 接受日期:2023-10-30 出版日期:2024-05-28 发布日期:2024-05-16
  • 作者简介:李咸善(1964—),男,教授,博士生导师,从事新能源与梯级储能联合运行优化调度、微电网运行与调度、水电站仿真与控制等研究,E-mail:lixianshan@ctgu.edu.cn
    丁胜彪(1999—),男,硕士研究生,从事新能源与梯级储能联合运行优化调度研究,E-mail:1226204438@qq.com
    李欣(1986—),男,通信作者,博士,副教授,从事新型人工智能算法在大规模电力系统中的应用、深度学习技术在电力系统中的应用研究,E-mail:ctgulx@ctgu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(基于集成-深度学习的高比例新能源大规模电力系统动态安全评估研究,52107107);梯级水电站运行与控制湖北省重点实验室(三峡大学)开放基金(基于灵活性资源调节的新能源区域电网风险协同优化调度,2022KJX07)。

Optimal Scheduling Strategy for Wind-Solar-Hydro Alliance Considering Compensation of Regulation by Hydropower

Xianshan LI1,2(), Shengbiao DING1(), Fei LI1,2, Xin LI1,2()   

  1. 1. College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China
    2. Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station (China Three Gorges University), Yichang 443002, China
  • Received:2023-08-01 Accepted:2023-10-30 Online:2024-05-28 Published:2024-05-16
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Dynamic Security Assessment of High Ratio New Energy Large Scale Power Systems Based on Integration Deep Learning, No.52107107), Open Fund of Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station (Risk Collaborative Optimization Dispatching of New Energy Regional Power Grid Based on Flexible Resource Regulation, No.2022KJX07).

摘要:

针对风光水综合能源跨区消纳调度中的梯级储能和梯级水电联合调节调度、水电调节费用公平疏导等关键问题,提出了考虑水电灵活调节费用疏导补偿的风光水联盟四阶段优化调度模型。首先,建立了基于梯级储能调节的入网前风光出力波动平抑模型,使平抑误差和平抑成本最小;提出了基于相对波动系数的梯级储能调节成本和调节功率的公平疏导方法。其次,基于梯级储能和梯级水电联合调节的风光水联盟联合出力对电网负荷的跟踪,构建了风光水联盟与区域电网的主从博弈模型,优化电网电价和联盟售电计划,达到双方利益最大。然后,构建了计及风光水不确定性的前两阶段调度模型的鲁棒优化模型,获得兼顾经济性和鲁棒性的联盟各主体能量调度策略。最后,构建了基于合作者边际贡献指数的非对称纳什谈判联盟效益分配模型,实现合作剩余的公平分配和水电调节费用的公平疏导。算例结果表明,该方法提升了各利益主体合作后的净利润,有利于维系联盟合作的稳定性,促进风光水综合能源跨区消纳。

关键词: 水电灵活调节, 新能源消纳, 主从博弈, 两阶段鲁棒优化, 非对称纳什谈判

Abstract:

Aiming at the key problems in cross-region consumption scheduling of the wind-solar-hydro integrated energy, such as the cascade energy storage, cascade hydropower joint regulation and scheduling methods, and fair allocation of hydropower regulation costs, a four-stage optimization scheduling model of wind-solar-hydro alliance is proposed with consideration of the compensation of hydropower flexible regulation costs. Firstly, a wind-solar power fluctuation suppression model based on cascade energy storage regulation is established to minimize the suppression error and cost. A fair allocation method for regulating cost and power of cascade energy storage based on wind-solar fluctuation coefficient is proposed. Secondly, based on the tracking of the power grid load by the joint output of the wind-solar-hydro alliance of the cascade energy storage and cascade hydropower joint regulation, a master-slave game model of wind-solar-hydro alliance and regional power grid is constructed to optimize the power grid price and alliance power sales plan, thus achieving the maximum benefit of both parties. Thirdly, a robust optimization model of the first two-stage scheduling model is constructed with consideration of the uncertainty of wind-solar-hydro, and a energy scheduling strategy is obtained for each entity of the alliance considering both economy and robustness. Finally, an asymmetric Nash negotiation model based on the partner's marginal contribution index is constructed to realize the fair distribution of cooperation surplus and the fair allocation of hydropower regulation costs. The case study results show that the proposed method can fairly improve the net profit of all stakeholders after cooperation, and is conducive to maintaining the stability of alliance cooperation and promoting the cross-regional consumption of wind-solar-hydro integrated energy.

Key words: flexible regulation of hydropower, new energy consumption, master-slave game, two-stage robust optimization, asymmetric Nash negotiation