[1] 俞拙非, 刘菲, 刘瑞环, 等. 面向配电网弹性提升的源网荷灵活资源优化研究综述及展望[J]. 中国电力, 2022, 55(4): 132–144 YU Zhuofei, LIU Fei, LIU Ruihuan, et al. Resilience-oriented optimization of source-grid-load flexible resources in distribution systems: review and prospect[J]. Electric Power, 2022, 55(4): 132–144 [2] 黄柯蒙, 刘继春. 计及需求响应和热电联产的多微电网联盟优化调度方法[J]. 智慧电力, 2021, 49(6): 107–115 HUANG Kemeng, LIU Jichun. Optimal dispatch method of multi-microgrid alliance considering demand response & CHP[J]. Smart Power, 2021, 49(6): 107–115 [3] 陈纬楠, 胡志坚, 岳菁鹏, 等. 考虑微电网接入的主动配电网双层能量管理[J]. 南方电网技术, 2020, 14(7): 30–38 CHEN Weinan, HU Zhijian, YUE Qingpeng, et al. Bi-level energy management of active distribution network considering microgrid access[J]. Southern Power System Technology, 2020, 14(7): 30–38 [4] 金强, 杨卫红, 王涛, 等. 考虑混合储能调频需求的独立微电网投资优化[J]. 电力科学与技术学报, 2021, 36(1): 52–62 JIN Qiang, YANG Weihong, WANG Tao, et al. Research on investment optimization of standalone microgrid considering frequency modulation with hybrid energy storage[J]. Journal of Electric Power Science and Technology, 2021, 36(1): 52–62 [5] 刘辉, 刘强, 张立, 等. 考虑需求侧协同响应的热电联供微网多目标规划[J]. 电力系统保护与控制, 2019, 47(5): 43–51. LIU Hui, LIU Qiang, ZHANG Li, et al. Multi-objective planning for combined heat and power microgrid considering demand side cooperative response[J]. Power System Protection and Control, 2019, 47(5): 43–51. [6] 黄弦超. 计及可控负荷的独立微网分布式电源容量优化[J]. 中国电机工程学报, 2018, 38(7): 1962–1970, 2211 HUANG Xianchao. Capacity optimization of distributed generation for stand-alone microgrid considering controllable load[J]. Proceedings of the CSEE, 2018, 38(7): 1962–1970, 2211 [7] 邵志芳, 赵强, 张玉琼. 独立型微电网源荷协调配置优化[J]. 电网技术, 2021, 45(10): 3935–3946 SHAO Zhifang, ZHAO Qiang, ZHANG Yuqiong. Source side and load side coordinated configuration optimization for stand-alone micro-grid[J]. Power System Technology, 2021, 45(10): 3935–3946 [8] HUANG W J, ZHANG N, YANG J W, et al. Optimal configuration planning of multi-energy systems considering distributed renewable energy[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 1452–1464. [9] WANG Y, ZHANG N, ZHUO Z Y, et al. Mixed-integer linear programming-based optimal configuration planning for energy hub: starting from scratch[J]. Applied Energy, 2018, 210: 1141–1150. [10] 陈健, 刘玉田, 张文, 等. 基于博弈论的配电网中多级微电网优化配置分析[J]. 电力系统自动化, 2016, 40(1): 45–52 CHEN Jian, LIU Yutian, ZHANG Wen, et al. Optimal sizing analysis of multilevel microgrids in distribution network based on Game theory[J]. Automation of Electric Power Systems, 2016, 40(1): 45–52 [11] 白佩琳, 雷霞, 何建平. 多微电网系统的竞价机制设计[J]. 现代电力, 2017, 34(6): 22–27 BAI Peilin, LEI Xia, HE Jianping. Design of bidding mechanism for multiple microgrids[J]. Modern Electric Power, 2017, 34(6): 22–27 [12] 窦春霞, 罗维, 岳东, 等. 基于多智能体的微网群内电力市场交易策略[J]. 电网技术, 2019, 43(5): 1735–1744 DOU Chunxia, LUO Wei, YUE Dong, et al. Multi-agent system based electricity market trading strategy within microgrid groups[J]. Power System Technology, 2019, 43(5): 1735–1744 [13] 赵敏, 沈沉, 刘锋, 等. 基于博弈论的多微电网系统交易模式研究[J]. 中国电机工程学报, 2015, 35(4): 848–857 ZHAO Min, SHEN Chen, LIU Feng, et al. A Game-theoretic approach to analyzing power trading possibilities in multi-microgrids[J]. Proceedings of the CSEE, 2015, 35(4): 848–857 [14] 练小林, 李晓露, 曹阳, 等. 考虑多主体主从博弈的多微网协调优化调度[J]. 电力系统及其自动化学报, 2021, 33(1): 85–93 LIAN Xiaolin, LI Xiaolu, CAO Yang, et al. Coordinated optimization scheduling of multi-microgrid considering multi-agent leader-follower game[J]. Proceedings of the CSU-EPSA, 2021, 33(1): 85–93 [15] 林顺富, 刘持涛, 李东东, 等. 考虑电能交互的冷热电区域多微网系统双层多场景协同优化配置[J]. 中国电机工程学报, 2020, 40(5): 1409–1421 LIN Shunfu, LIU Chitao, LI Dongdong, et al. Bi-level multiple scenarios collaborative optimization configuration of CCHP regional multi-microgrid system considering power interaction among microgrids[J]. Proceedings of the CSEE, 2020, 40(5): 1409–1421 [16] 金顺平, 房方, 朱仲晏, 等. 不同投资模式下计及缺电率约束的微网容量配置博弈分析[J]. 中国电力, 2020, 53(8): 173–181 JIN Shunping, FANG Fang, ZHU Zhongyan, et al. Game analysis of microgrid capacity configuration for different investment modes constrained by loss of power supply probability[J]. Electric Power, 2020, 53(8): 173–181 [17] 黄南天, 包佳瑞琦, 蔡国伟, 等. 多主体联合投资微电网源–储多策略有限理性决策演化博弈容量规划[J]. 中国电机工程学报, 2020, 40(4): 1212–1225,1412 HUANG Nantian, BAO Jiaruiqi, CAI Guowei, et al. Multi-agent joint investment microgrid source-storage multi-strategy bounded rational decision evolution game capacity planning[J]. Proceedings of the CSEE, 2020, 40(4): 1212–1225,1412 [18] 陈磊, 牛玉刚, 贾廷纲. 基于主从博弈的多微网能量调度策略[J]. 电力系统保护与控制, 2020, 48(19): 35–42 CHEN Lei, NIU Yugang, JIA Tinggang. Multi-microgrid energy scheduling strategy based on master-slave game[J]. Power System Protection and Control, 2020, 48(19): 35–42 [19] MA J H, REN H. The impact of variable cost on a dynamic Cournot-Stackelberg game with two decision-making stages[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 62: 184–201. [20] LU P, LV H, LIU N, et al. Optimal flexibility dispatch of demand side resources with high penetration of renewables: a Stackelberg game method[J]. Global Energy Interconnection, 2021, 4(1): 28–38. [21] 李鹏, 吴迪凡, 李雨薇, 等. 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41(4): 1307–1321,1538 LI Peng, WU Difan, LI Yuwei, et al. Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and stackelberg game[J]. Proceedings of the CSEE, 2021, 41(4): 1307–1321,1538 [22] 薛佳诚, 唐忠, 盛锐, 等. 电力市场背景下基于主从博弈的新能源消纳模型[J]. 现代电力, 2020, 37(3): 270–276 XUE Jiacheng, TANG Zhong, SHENG Rui, et al. New energy consumption model based on stackelberg game under the background of electricity market[J]. Modern Electric Power, 2020, 37(3): 270–276 [23] ZHU W, NIKAFSHAN RAD H, HASANIPANAH M. A chaos recurrent ANFIS optimized by PSO to predict ground vibration generated in rock blasting[J]. Applied Soft Computing, 2021, 108: 107434. [24] YAN C, LI M X, LIU W, et al. Improved adaptive genetic algorithm for the vehicle Insurance Fraud Identification Model based on a BP Neural Network[J]. Theoretical Computer Science, 2020, 817: 12–23. [25] ZHANG Y N, ZHOU Y H. Distributed coordination control of traffic network flow using adaptive genetic algorithm based on cloud computing[J]. Journal of Network and Computer Applications, 2018, 119: 110–120. [26] 王长浩, 刘洋, 许立雄. 考虑风电和负荷不确定冷热电联供微网日前经济调度[J]. 中国电力, 2020, 53(8): 50–59 WANG Changhao, LIU Yang, XU Lixiong. Day-ahead economic dispatch for a combined cooling, heat and power microgrid system considering wind power and load uncertainty[J]. Electric Power, 2020, 53(8): 50–59 [27] 刘练, 李林, 丁明, 等. 面向园区的光储型微电网设计与应用[J]. 电力系统保护与控制, 2020, 48(3): 171–179 LIU Lian, LI Lin, DING Ming, et al. Design and application of photovoltaic and energy storage microgrid for the park[J]. Power System Protection and Control, 2020, 48(3): 171–179 [28] 王艳松, 孙明鸿. 含微网配电网的综合优化规划研究[J]. 中国电力, 2018, 51(2): 118–124 WANG Yansong, SUN Minghong. Research on comprehensive optimization for distribution network with micro-grid[J]. Electric Power, 2018, 51(2): 118–124
|