中国电力 ›› 2025, Vol. 58 ›› Issue (11): 122-134.DOI: 10.11930/j.issn.1004-9649.202501053

• 电-碳协同下分布式能源系统运营关键技术 • 上一篇    下一篇

动态电价下计及能量回收的电动汽车负荷时空引导策略

杨新桥1(), 加鹤萍1(), 李培军2, 李顺3, 龙羿3, 刘敦楠1, 黄辉1   

  1. 1. 华北电力大学 经济与管理学院,北京 102206
    2. 国网智慧车联网技术有限公司,北京 100052
    3. 国网重庆市电力公司营销服务中心,重庆 400014
  • 收稿日期:2025-01-20 修回日期:2025-04-23 发布日期:2025-12-01 出版日期:2025-11-28
  • 作者简介:
    杨新桥(2000),男,硕士研究生,从事车网互动研究,E-mail:fengba80418@163.com
    加鹤萍(1992),女,通信作者,副教授,从事虚拟电厂、车网互动及电力市场研究,E-mail:jiaheping@ncepu.edu.cn
  • 基金资助:
    国家电网公司科技项目(5400-202427221A-1-1-ZN)。

Spatio-temporal Guidance Strategy for Electric Vehicle Loads with Energy Recovery under Dynamic Pricing

YANG Xinqiao1(), JIA Heping1(), LI Peijun2, LI Shun3, LONG Yi3, LIU Dunnan1, HUANG Hui1   

  1. 1. School of Economics and Management, North China Electric Power University, Beijing 102206, China
    2. State Grid Smart Internet of Vehicles Co., Ltd., Beijing 100052, China
    3. Marketing Service Center, State Grid Chongqing Electric Power Company, Chongqing 400014, China
  • Received:2025-01-20 Revised:2025-04-23 Online:2025-12-01 Published:2025-11-28
  • Supported by:
    This work is supported by Science and Technology Project of State Grid Corporation of China (No.5400-202427221A-1-1-ZN).

摘要:

随着电动汽车的规模化发展,高不确定性的电动汽车无序接入电网会加剧电网峰谷差,有必要通过动态电价的引导,提高电动汽车灵活调节能力。此外,广泛应用于电动汽车的能量回收技术有助于减少能量损耗,降低碳排放。为此,提出动态电价下考虑能量回收的电动汽车负荷时空引导策略。首先,基于城市交通网络拓扑图,建立考虑城市功能区的电动汽车出行链模型。然后,考虑电动汽车制动能量回收,基于蒙特卡洛模拟方法构建电动汽车负荷时空分布模型,并引入考虑用户连续充电行为的充电效用函数,建立考虑配电网负荷波动最小和电动汽车用户充电成本最小的主从博弈模型,实现动态电价机制下的计及能量回收的电动汽车负荷时空引导。最后,通过算例验证该方法对电动汽车负荷时空分布引导的有效性。

关键词: 电动汽车, 时空分布, 动态电价, 能量回收, 主从博弈模型

Abstract:

With the large-scale development of electric vehicles, the disorderly access of high-uncertainty electric vehicles to the grid will exacerbate the peak-valley difference of the grid, and it is necessary to improve the flexible adjustment ability of electric vehicles through the guidance of dynamic pricing. In addition, the energy recovery technology widely used in electric vehicles helps to reduce energy loss and carbon emission. This paper proposes a spatio-temporal guidance strategy for electric vehicle loads considering energy recovery under dynamic pricing. Firstly, based on the topological map of urban transportation network, an electric vehicle travel chain model considering urban functional areas is established. Secondly, based on Monte Carlo simulation method, a spatio-temporal distribution model of electric vehicle load considering electric vehicle braking energy recovery is constructed; and by introducing a charging utility function that considers users' sequential charging behavior, a Stackelberg game model is established to minimize distribution grid load fluctuations and electric vehicle user charging costs, which achieves the spatio-temporal guidance for electric vehicle loads considering energy recovery under a dynamic pricing mechanism. Finally, a case study is used to verify the effectiveness of the proposed method in guiding the spatio-temporal distribution of electric vehicle loads.

Key words: electric vehicles, spatio-temporal distribution, dynamic electricity pricing, energy recovery, stackelberg game model


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?