中国电力 ›› 2025, Vol. 58 ›› Issue (4): 148-158.DOI: 10.11930/j.issn.1004-9649.202407004
收稿日期:
2024-07-01
录用日期:
2024-09-29
发布日期:
2025-04-23
出版日期:
2025-04-28
作者简介:
基金资助:
Received:
2024-07-01
Accepted:
2024-09-29
Online:
2025-04-23
Published:
2025-04-28
Supported by:
摘要:
电力系统中新能源的高比例渗透使得频率稳定受到严重挑战。随着V2G的发展,电动汽车能够作为灵活储能资源为电力系统提供稳定的调频服务。为了使电动汽车能够为电网提供更大的调频容量,提高用户参与电网调频意愿,分析了电动汽车的行为特性、荷电状态及功率约束,对电动汽车出行链及其行驶区域交通网进行建模,提出优化电动汽车期望荷电状态约束方法,构建电动汽车弹性调频容量空间、激励机制和调频控制策略。仿真验证表明:与不考虑弹性充电需求的传统控制策略相比,考虑弹性充电需求的控制策略在为电网提供调频容量、增加用户调频收益等方面具有优势。所提出的控制策略能够为电网提供更大的调频容量,增加用户的调频收益,维持电网频率的稳定。
李晓涵, 曹伟. 弹性充电需求下电动汽车调频激励机制及控制策略[J]. 中国电力, 2025, 58(4): 148-158.
LI Xiaohan, CAO Wei. Frequency Regulation Incentive Mechanism and Control Strategy for Electric Vehicles Under Elastic Charging Demand[J]. Electric Power, 2025, 58(4): 148-158.
参数类型 | 数值 | 参数类型 | 数值 | |||
调速器时间常数 TG/s | 0.2 | 调差系数 Rg(p.u.) | 0.05 | |||
汽轮机时间常数 TCH/s | 0.3 | 惯性时间常数 Hg/s | 5 | |||
再热时间常数 TRH/s | 7.0 | 阻尼系数 D(p.u.) | 1.0 | |||
再热系数 FHP(p.u.) | 0.3 | 额定频率 f/Hz | 50 |
表 1 仿真系统参数
Table 1 Simulation system parameters
参数类型 | 数值 | 参数类型 | 数值 | |||
调速器时间常数 TG/s | 0.2 | 调差系数 Rg(p.u.) | 0.05 | |||
汽轮机时间常数 TCH/s | 0.3 | 惯性时间常数 Hg/s | 5 | |||
再热时间常数 TRH/s | 7.0 | 阻尼系数 D(p.u.) | 1.0 | |||
再热系数 FHP(p.u.) | 0.3 | 额定频率 f/Hz | 50 |
类型 | H⇆W | H⇆B | H⇆W⇆B | |||
数值 | 0.73 | 0.15 | 0.12 |
表 2 电动汽车区域转移概率
Table 2 Probability of EV regional transfer
类型 | H⇆W | H⇆B | H⇆W⇆B | |||
数值 | 0.73 | 0.15 | 0.12 |
参数类型 | 数值 | 参数类型 | 数值 | |||
EV电池容量/(kW·h) | 30 | 期望SOC分布 | N(0.75, 0.85) | |||
最大充电功率/kW | 6 | 容量补偿系数 | 1.02 | |||
充电效率 | 0.95 | 弹性激励系数 | 1.2 | |||
最大放电功率/kW | 6 | 电价置信度 | 0.95 | |||
放电效率 | 0.95 |
表 3 仿真参数
Table 3 Simulation parameters
参数类型 | 数值 | 参数类型 | 数值 | |||
EV电池容量/(kW·h) | 30 | 期望SOC分布 | N(0.75, 0.85) | |||
最大充电功率/kW | 6 | 容量补偿系数 | 1.02 | |||
充电效率 | 0.95 | 弹性激励系数 | 1.2 | |||
最大放电功率/kW | 6 | 电价置信度 | 0.95 | |||
放电效率 | 0.95 |
1 | 张俊成, 黎敏, 刘志文, 等. 配电网用户侧多类型柔性资源调节能力评估方法[J]. 中国电力, 2023, 56 (9): 96- 103, 119. |
ZHANG Juncheng, LI Min, LIU Zhiwen, et al. An evaluation method for multi-type flexible resource regulation capability on the user side of distribution networks[J]. Electric Power, 2023, 56 (9): 96- 103, 119. | |
2 | 于凤娇, 王典, 李润宇. 计及需求侧响应的分布式电源并网优化策略[J]. 东北电力大学学报, 2022, 42 (2): 92- 103. |
YU Fengjiao, WANG Dian, LI Runyu. Optimization strategy for grid connection of distributed generation considering demand side response[J]. Journal of Northeast Electric Power University, 2022, 42 (2): 92- 103. | |
3 | 中华人民共和国中央人民政府. 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知[EB/OL]. (2020-11-02) [2024-06-18]. https://www.gov.cn/gongbao/content/2020/content_5560291.htm. |
4 |
马艳红, 张炜函. 考虑充放电成本的V2G参与用户细分及激励机制研究[J]. 智慧电力, 2024, 52 (5): 31- 36, 51.
DOI |
MA Yanhong, ZHANG Weihan. V2G participating in user segmentation & incentive mechanism considering charging and discharging cost[J]. Smart Power, 2024, 52 (5): 31- 36, 51.
DOI |
|
5 | 夏晖, 张敏, 刘志强, 等. 新能源项目运营技术经济分析及其对发展的影响[J]. 电力科技与环保, 2023, 39 (6): 543- 552. |
XIA Hui, ZHANG Min, LIU Zhiqiang, et al. Investigate on the impact factors of operational capability for new energy projects[J]. Electric Power Technology and Environmental Protection, 2023, 39 (6): 543- 552. | |
6 | 安佳坤, 杨书强, 王涛, 等. 电动汽车聚合下的微能源互联网优化调度策略[J]. 中国电力, 2023, 56 (5): 80- 88. |
AN Jiakun, YANG Shuqiang, WANG Tao, et al. Optimal scheduling strategy for micro energy Internet under electric vehicles aggregation[J]. Electric Power, 2023, 56 (5): 80- 88. | |
7 | 陈浩, 胡俊杰, 袁海峰, 等. 计及配电网拥塞的集群电动汽车参与二次调频方法研究[J]. 中国电力, 2021, 54 (12): 162- 169. |
CHEN Hao, HU Junjie, YUAN Haifeng, et al. Research on supplementary frequency regulation with aggregated electric vehicles considering distribution network congestion[J]. Electric Power, 2021, 54 (12): 162- 169. | |
8 |
吴盛军, 曹路, 陈浩, 等. 基于充放电裕度的电动汽车集群一次调频控制策略[J]. 电力工程技术, 2024, 43 (2): 154- 162, 188.
DOI |
WU Shengjun, CAO Lu, CHEN Hao, et al. Primary frequency regulation control strategy for electric vehicle aggregation based on charging and discharging margin[J]. Electric Power Engineering Technology, 2024, 43 (2): 154- 162, 188.
DOI |
|
9 | 赵梓潼, 顾兵. 需求响应下基于电动汽车负荷聚合商的充放电电价与时段研究[J]. 东北电力大学学报, 2023, 43 (6): 79- 86. |
ZHAO Zitong, GU Bing. Research on charging and discharging price and time period basedon electric vehicle load aggregator under demand response[J]. Journal of Northeast Electric Power University, 2023, 43 (6): 79- 86. | |
10 |
LIU H, QI J J, WANG J H, et al. EV dispatch control for supplementary frequency regulation considering the expectation of EV owners[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 3763- 3772.
DOI |
11 |
IQBAL S, XIN A, JAN M U, et al. Aggregation of evs for primary frequency control of an industrial microgrid by implementing grid regulation & charger controller[J]. IEEE Access, 2020, 8, 141977- 141989.
DOI |
12 |
WANG M, MU Y, SHI Q, et al. Electric vehicle aggregator modeling and control for frequency regulation considering progressive state recovery[J]. IEEE Transactions on Smart Grid, 2020, 11 (5): 4176- 4189.
DOI |
13 |
高爽, 戴如鑫. 电动汽车集群参与调频辅助服务市场的充电调控策略[J]. 电力系统自动化, 2023, 47 (18): 60- 67.
DOI |
GAO Shuang, DAI Ruxin. Charging control strategy for electric vehicle aggregation participating in frequency regulation ancillary service market[J]. Automation of Electric Power Systems, 2023, 47 (18): 60- 67.
DOI |
|
14 | 葛乐, 王庆园, 王明深, 等. 考虑充放电激励机制的电动汽车聚合商参与能量-调频市场多阶段运营策略[J]. 电力自动化设备, 2024, 44 (6): 176- 184. |
GE Le, WANG Qingyuan, WANG Mingshen, et al. Multi-stage operation strategy of electric vehicle aggregator participating in energy and frequency regulation markets considering charging and discharging incentive mechanisms[J]. Electric Power Automation Equipment, 2024, 44 (6): 176- 184. | |
15 |
侯慧, 唐俊一, 王逸凡, 等. 价格与激励联合需求响应下电动汽车长时间尺度充放电调度[J]. 电力系统自动化, 2022, 46 (15): 46- 55.
DOI |
HOU Hui, TANG Junyi, WANG Yifan, et al. Long-time-scale charging and discharging scheduling of electric vehicles under joint price and incentive demand response[J]. Automation of Electric Power Systems, 2022, 46 (15): 46- 55.
DOI |
|
16 |
TAO Y C, QIU J, LAI S Y. Deep reinforcement learning based bidding strategy for EVAs in local energy market considering information asymmetry[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (6): 3831- 3842.
DOI |
17 | 崔岩, 胡泽春, 段小宇. 考虑充电需求空间灵活性的电动汽车运行优化研究综述[J]. 电网技术, 2022, 46 (3): 981- 994. |
CUI Yan, HU Zechun, DUAN Xiaoyu. Review on the electric vehicles operation optimization considering the spatial flexibility of electric vehicles charging demands[J]. Power System Technology, 2022, 46 (3): 981- 994. | |
18 | 陈丽丹, 张尧, Antonio Figueiredo. 融合多源信息的电动汽车充电负荷预测及其对配电网的影响[J]. 电力自动化设备, 2018, 38 (12): 1- 10. |
CHEN Lidan, ZHANG Yao, FIGUEIREDO A. Charging load forecasting of electric vehicles based on multi-source information fusion and its influence on distribution network[J]. Electric Power Automation Equipment, 2018, 38 (12): 1- 10. | |
19 | IVERSEN E B, MØLLER J K, MORALES J M, et al. Inhomogeneous Markov models for describing driving patterns[J]. IEEE Transactions on Smart Grid, 2017, 8 (2): 581- 588. |
20 | 邢强, 陈中, 冷钊莹, 等. 基于实时交通信息的电动汽车路径规划和充电导航策略[J]. 中国电机工程学报, 2020, 40 (2): 534- 550. |
XING Qiang, CHEN Zhong, LENG Zhaoying, et al. Route planning and charging navigation strategy for electric vehicles based on real-time traffic information[J]. Proceedings of the CSEE, 2020, 40 (2): 534- 550. | |
21 | 新能源汽车国家大数据联盟. 中国小型纯电动乘用车出行大数据报告[R]. 北京: 新能源汽车国家大数据联盟, 2020. |
National Big Data Alliance of New Energy Vehicles. Big data report on China's small pure electric passenger vehicle travel[R]. Beijing: National Big Data Alliance of New Energy Vehicles, 2020. | |
22 | 禤宗衡, 荆朝霞, 叶文圣, 等. 考虑储能灵活能量状态的新型电能量市场机制[J]. 电网技术, 2022, 46 (10): 3810- 3823. |
XUAN Zongheng, JING Zhaoxia, YE Wensheng, et al. New energy market mechanism considering flexible state of energy in energy storage[J]. Power System Technology, 2022, 46 (10): 3810- 3823. | |
23 |
徐俊俊, 程奕凌, 张腾飞, 等. 计及充电行为特征与可调性的电动汽车集群优化调度[J]. 电力系统自动化, 2023, 47 (23): 23- 32.
DOI |
XU Junjun, CHENG Yiling, ZHANG Tengfei, et al. Optimal scheduling of electric vehicle clusters considering characteristics and adjustability of charging behavior[J]. Automation of Electric Power Systems, 2023, 47 (23): 23- 32.
DOI |
|
24 | 王秀茹, 黄小庆, 段建焱, 等. 电池健康状态对电动汽车充电负荷计算的影响[J]. 南方电网技术, 2023, 17 (7): 65- 73. |
WANG Xiuru, HUANG Xiaoqing, DUAN Jianyan, et al. Influence of state of health of battery on EV charging load calculation[J]. Southern Power System Technology, 2023, 17 (7): 65- 73. | |
25 |
SAXENA S, HENDRICKS C, PECHT M. Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges[J]. Journal of Power Sources, 2016, 327, 394- 400.
DOI |
26 |
周椿奇, 向月, 童话, 等. 轨迹数据驱动的电动汽车充电需求及V2G可调控容量估计[J]. 电力系统自动化, 2022, 46 (12): 46- 55.
DOI |
ZHOU Chunqi, XIANG Yue, TONG Hua, et al. Trajectory-data-driven estimation of electric vehicle charging demand and vechicle-to-grid regulable capacity[J]. Automation of Electric Power Systems, 2022, 46 (12): 46- 55.
DOI |
|
27 | 祁兵, 陈淑娇, 李彬, 等. 计及用户满意度的可调节负荷资源需求响应优化策略研究[J]. 内蒙古电力技术, 2023, 41 (3): 43- 50. |
QI Bing, CHEN Shujiao, LI Bin, et al. Research on demand response optimization strategy of adjustable load resource considering user satisfaction[J]. Inner Mongolia Electric Power, 2023, 41 (3): 43- 50. | |
28 |
YANG W, XIANG Y, LIU J Y, et al. Agent-based modeling for scale evolution of plug-in electric vehicles and charging demand[J]. IEEE Transactions on Power Systems, 2018, 33 (2): 1915- 1925.
DOI |
29 | KUNDUR P. Power system stability and control[M]. McGraw-Hill, Companies, Inc, 1994. |
30 |
RAUTIAINEN A, REPO S, JARVENTAUSTA P, et al. Statistical charging load modeling of PHEVs in electricity distribution networks using national travel survey data[J]. IEEE Transactions on Smart Grid, 2012, 3 (4): 1650- 1659.
DOI |
31 | DENG X S, ZHANG Q, LI Y, et al. Hierarchical distributed frequency regulation strategy of electric vehicle cluster considering demand charging load optimization[C]//2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS). Jinan, China. IEEE, 2020: 959–969. |
32 | 潘振宁, 余涛, 王克英. 考虑多方主体利益的大规模电动汽车分布式实时协同优化[J]. 中国电机工程学报, 2019, 39 (12): 3528- 3541. |
PAN Zhenning, YU Tao, WANG Keying. Decentralized coordinated dispatch for real-time optimization of massive electric vehicles considering various interests[J]. Proceedings of the CSEE, 2019, 39 (12): 3528- 3541. | |
33 | SONG M, AMELIN M. Purchase bidding strategy for a retailer with flexible demands in day-ahead electricity market[C]//2017 IEEE Manchester PowerTech. Manchester, UK. IEEE, 2017: 1. |
[1] | 郑佳俊, 段小宇, 胡泽春, 胡晓锐, 朱彬. 组件式移动充电设施布局优化方法与投放策略[J]. 中国电力, 2025, 58(4): 107-118. |
[2] | 苏大威, 范旖晖, 赵天辉, 潘虹锦, 黄佑会, 王岗, 贾勇勇. 基于价格激励的城市公共充电站填谷潜力评估[J]. 中国电力, 2025, 58(4): 131-139. |
[3] | 颜俊, 罗宇杰, 颜安, 贺伟, 韩涛, 杨军. 计及用户响应特性的电动汽车充电站设备优化配置方法[J]. 中国电力, 2025, 58(4): 140-147. |
[4] | 么钟然, 孙丽颖. 考虑线路阻抗的分布式储能SOC均衡控制策略[J]. 中国电力, 2024, 57(9): 238-246. |
[5] | 邵冲, 胡荣义, 余姣, 王明典. 考虑荷电与储氢状态的风光氢储系统动态控制仿真模型[J]. 中国电力, 2024, 57(7): 109-124. |
[6] | 朱沐雨, 马宏忠, 郭鹏宇, 宣文婧. 典型调峰/调频工况下储能电池组荷电状态估计[J]. 中国电力, 2024, 57(6): 18-26. |
[7] | 马宏忠, 宣文婧, 朱沐雨, 陈悦林. 基于LWOA-LSTM的大容量锂电池SOC估计[J]. 中国电力, 2024, 57(6): 37-44. |
[8] | 曹宇, 胡鹏飞, 蔡婉琪, 王曦, 江道灼, 梁一桥. 基于MMC的超级电容与蓄电池混合储能系统及其混合同步控制策略[J]. 中国电力, 2024, 57(6): 78-89. |
[9] | 丁屹峰, 曾爽, 张宝群, 王立永, 刘畅, 付智, 张吉. 光伏-直流智能充电桩有序充电策略与应用效果[J]. 中国电力, 2024, 57(5): 70-77. |
[10] | 吕志鹏, 宋振浩, 李立生, 刘洋. 含电动汽车的工业园区综合能源系统优化调度[J]. 中国电力, 2024, 57(4): 25-31. |
[11] | 高月芬, 员成博, 孔凡鹏, 王雪松. 需求响应激励下耦合电转气、碳捕集设备的综合能源系统优化[J]. 中国电力, 2024, 57(4): 32-41. |
[12] | 杨磊, 浑连明, 祖国强, 李树军, 李心达, 郭俊龙, 张玉涛. 电动汽车充电机器人发展现状和标准需求[J]. 中国电力, 2024, 57(4): 89-99. |
[13] | 张雷, 肖伟栋, 蒋纯冰, 刘耀, 李少杰, 张吉. 光伏办公建筑的关键设备容量配置方法[J]. 中国电力, 2024, 57(3): 152-159, 169. |
[14] | 周原冰, 龚乃玮, 王皓界, 肖晋宇, 张赟. 中国电动汽车发展及车网互动对新型储能配置的影响[J]. 中国电力, 2024, 57(10): 1-11. |
[15] | 张俊成, 黎敏, 刘志文, 谭靖, 陶毅刚, 罗天禄. 配电网用户侧多类型柔性资源调节能力评估方法[J]. 中国电力, 2023, 56(9): 96-103,119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||