中国电力 ›› 2025, Vol. 58 ›› Issue (4): 148-158.DOI: 10.11930/j.issn.1004-9649.202407004
收稿日期:2024-07-01
录用日期:2024-09-29
发布日期:2025-04-23
出版日期:2025-04-28
作者简介:基金资助:Received:2024-07-01
Accepted:2024-09-29
Online:2025-04-23
Published:2025-04-28
Supported by:摘要:
电力系统中新能源的高比例渗透使得频率稳定受到严重挑战。随着V2G的发展,电动汽车能够作为灵活储能资源为电力系统提供稳定的调频服务。为了使电动汽车能够为电网提供更大的调频容量,提高用户参与电网调频意愿,分析了电动汽车的行为特性、荷电状态及功率约束,对电动汽车出行链及其行驶区域交通网进行建模,提出优化电动汽车期望荷电状态约束方法,构建电动汽车弹性调频容量空间、激励机制和调频控制策略。仿真验证表明:与不考虑弹性充电需求的传统控制策略相比,考虑弹性充电需求的控制策略在为电网提供调频容量、增加用户调频收益等方面具有优势。所提出的控制策略能够为电网提供更大的调频容量,增加用户的调频收益,维持电网频率的稳定。
李晓涵, 曹伟. 弹性充电需求下电动汽车调频激励机制及控制策略[J]. 中国电力, 2025, 58(4): 148-158.
LI Xiaohan, CAO Wei. Frequency Regulation Incentive Mechanism and Control Strategy for Electric Vehicles Under Elastic Charging Demand[J]. Electric Power, 2025, 58(4): 148-158.
| 参数类型 | 数值 | 参数类型 | 数值 | |||
| 调速器时间常数 TG/s | 0.2 | 调差系数 Rg(p.u.) | 0.05 | |||
| 汽轮机时间常数 TCH/s | 0.3 | 惯性时间常数 Hg/s | 5 | |||
| 再热时间常数 TRH/s | 7.0 | 阻尼系数 D(p.u.) | 1.0 | |||
| 再热系数 FHP(p.u.) | 0.3 | 额定频率 f/Hz | 50 |
表 1 仿真系统参数
Table 1 Simulation system parameters
| 参数类型 | 数值 | 参数类型 | 数值 | |||
| 调速器时间常数 TG/s | 0.2 | 调差系数 Rg(p.u.) | 0.05 | |||
| 汽轮机时间常数 TCH/s | 0.3 | 惯性时间常数 Hg/s | 5 | |||
| 再热时间常数 TRH/s | 7.0 | 阻尼系数 D(p.u.) | 1.0 | |||
| 再热系数 FHP(p.u.) | 0.3 | 额定频率 f/Hz | 50 |
| 类型 | H⇆W | H⇆B | H⇆W⇆B | |||
| 数值 | 0.73 | 0.15 | 0.12 |
表 2 电动汽车区域转移概率
Table 2 Probability of EV regional transfer
| 类型 | H⇆W | H⇆B | H⇆W⇆B | |||
| 数值 | 0.73 | 0.15 | 0.12 |
| 参数类型 | 数值 | 参数类型 | 数值 | |||
| EV电池容量/(kW·h) | 30 | 期望SOC分布 | N(0.75, 0.85) | |||
| 最大充电功率/kW | 6 | 容量补偿系数 | 1.02 | |||
| 充电效率 | 0.95 | 弹性激励系数 | 1.2 | |||
| 最大放电功率/kW | 6 | 电价置信度 | 0.95 | |||
| 放电效率 | 0.95 |
表 3 仿真参数
Table 3 Simulation parameters
| 参数类型 | 数值 | 参数类型 | 数值 | |||
| EV电池容量/(kW·h) | 30 | 期望SOC分布 | N(0.75, 0.85) | |||
| 最大充电功率/kW | 6 | 容量补偿系数 | 1.02 | |||
| 充电效率 | 0.95 | 弹性激励系数 | 1.2 | |||
| 最大放电功率/kW | 6 | 电价置信度 | 0.95 | |||
| 放电效率 | 0.95 |
| 1 | 张俊成, 黎敏, 刘志文, 等. 配电网用户侧多类型柔性资源调节能力评估方法[J]. 中国电力, 2023, 56 (9): 96- 103, 119. |
| ZHANG Juncheng, LI Min, LIU Zhiwen, et al. An evaluation method for multi-type flexible resource regulation capability on the user side of distribution networks[J]. Electric Power, 2023, 56 (9): 96- 103, 119. | |
| 2 | 于凤娇, 王典, 李润宇. 计及需求侧响应的分布式电源并网优化策略[J]. 东北电力大学学报, 2022, 42 (2): 92- 103. |
| YU Fengjiao, WANG Dian, LI Runyu. Optimization strategy for grid connection of distributed generation considering demand side response[J]. Journal of Northeast Electric Power University, 2022, 42 (2): 92- 103. | |
| 3 | 中华人民共和国中央人民政府. 国务院办公厅关于印发新能源汽车产业发展规划(2021—2035年)的通知[EB/OL]. (2020-11-02) [2024-06-18]. https://www.gov.cn/gongbao/content/2020/content_5560291.htm. |
| 4 |
马艳红, 张炜函. 考虑充放电成本的V2G参与用户细分及激励机制研究[J]. 智慧电力, 2024, 52 (5): 31- 36, 51.
DOI |
|
MA Yanhong, ZHANG Weihan. V2G participating in user segmentation & incentive mechanism considering charging and discharging cost[J]. Smart Power, 2024, 52 (5): 31- 36, 51.
DOI |
|
| 5 | 夏晖, 张敏, 刘志强, 等. 新能源项目运营技术经济分析及其对发展的影响[J]. 电力科技与环保, 2023, 39 (6): 543- 552. |
| XIA Hui, ZHANG Min, LIU Zhiqiang, et al. Investigate on the impact factors of operational capability for new energy projects[J]. Electric Power Technology and Environmental Protection, 2023, 39 (6): 543- 552. | |
| 6 | 安佳坤, 杨书强, 王涛, 等. 电动汽车聚合下的微能源互联网优化调度策略[J]. 中国电力, 2023, 56 (5): 80- 88. |
| AN Jiakun, YANG Shuqiang, WANG Tao, et al. Optimal scheduling strategy for micro energy Internet under electric vehicles aggregation[J]. Electric Power, 2023, 56 (5): 80- 88. | |
| 7 | 陈浩, 胡俊杰, 袁海峰, 等. 计及配电网拥塞的集群电动汽车参与二次调频方法研究[J]. 中国电力, 2021, 54 (12): 162- 169. |
| CHEN Hao, HU Junjie, YUAN Haifeng, et al. Research on supplementary frequency regulation with aggregated electric vehicles considering distribution network congestion[J]. Electric Power, 2021, 54 (12): 162- 169. | |
| 8 |
吴盛军, 曹路, 陈浩, 等. 基于充放电裕度的电动汽车集群一次调频控制策略[J]. 电力工程技术, 2024, 43 (2): 154- 162, 188.
DOI |
|
WU Shengjun, CAO Lu, CHEN Hao, et al. Primary frequency regulation control strategy for electric vehicle aggregation based on charging and discharging margin[J]. Electric Power Engineering Technology, 2024, 43 (2): 154- 162, 188.
DOI |
|
| 9 | 赵梓潼, 顾兵. 需求响应下基于电动汽车负荷聚合商的充放电电价与时段研究[J]. 东北电力大学学报, 2023, 43 (6): 79- 86. |
| ZHAO Zitong, GU Bing. Research on charging and discharging price and time period basedon electric vehicle load aggregator under demand response[J]. Journal of Northeast Electric Power University, 2023, 43 (6): 79- 86. | |
| 10 |
LIU H, QI J J, WANG J H, et al. EV dispatch control for supplementary frequency regulation considering the expectation of EV owners[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 3763- 3772.
DOI |
| 11 |
IQBAL S, XIN A, JAN M U, et al. Aggregation of evs for primary frequency control of an industrial microgrid by implementing grid regulation & charger controller[J]. IEEE Access, 2020, 8, 141977- 141989.
DOI |
| 12 |
WANG M, MU Y, SHI Q, et al. Electric vehicle aggregator modeling and control for frequency regulation considering progressive state recovery[J]. IEEE Transactions on Smart Grid, 2020, 11 (5): 4176- 4189.
DOI |
| 13 |
高爽, 戴如鑫. 电动汽车集群参与调频辅助服务市场的充电调控策略[J]. 电力系统自动化, 2023, 47 (18): 60- 67.
DOI |
|
GAO Shuang, DAI Ruxin. Charging control strategy for electric vehicle aggregation participating in frequency regulation ancillary service market[J]. Automation of Electric Power Systems, 2023, 47 (18): 60- 67.
DOI |
|
| 14 | 葛乐, 王庆园, 王明深, 等. 考虑充放电激励机制的电动汽车聚合商参与能量-调频市场多阶段运营策略[J]. 电力自动化设备, 2024, 44 (6): 176- 184. |
| GE Le, WANG Qingyuan, WANG Mingshen, et al. Multi-stage operation strategy of electric vehicle aggregator participating in energy and frequency regulation markets considering charging and discharging incentive mechanisms[J]. Electric Power Automation Equipment, 2024, 44 (6): 176- 184. | |
| 15 |
侯慧, 唐俊一, 王逸凡, 等. 价格与激励联合需求响应下电动汽车长时间尺度充放电调度[J]. 电力系统自动化, 2022, 46 (15): 46- 55.
DOI |
|
HOU Hui, TANG Junyi, WANG Yifan, et al. Long-time-scale charging and discharging scheduling of electric vehicles under joint price and incentive demand response[J]. Automation of Electric Power Systems, 2022, 46 (15): 46- 55.
DOI |
|
| 16 |
TAO Y C, QIU J, LAI S Y. Deep reinforcement learning based bidding strategy for EVAs in local energy market considering information asymmetry[J]. IEEE Transactions on Industrial Informatics, 2022, 18 (6): 3831- 3842.
DOI |
| 17 | 崔岩, 胡泽春, 段小宇. 考虑充电需求空间灵活性的电动汽车运行优化研究综述[J]. 电网技术, 2022, 46 (3): 981- 994. |
| CUI Yan, HU Zechun, DUAN Xiaoyu. Review on the electric vehicles operation optimization considering the spatial flexibility of electric vehicles charging demands[J]. Power System Technology, 2022, 46 (3): 981- 994. | |
| 18 | 陈丽丹, 张尧, Antonio Figueiredo. 融合多源信息的电动汽车充电负荷预测及其对配电网的影响[J]. 电力自动化设备, 2018, 38 (12): 1- 10. |
| CHEN Lidan, ZHANG Yao, FIGUEIREDO A. Charging load forecasting of electric vehicles based on multi-source information fusion and its influence on distribution network[J]. Electric Power Automation Equipment, 2018, 38 (12): 1- 10. | |
| 19 | IVERSEN E B, MØLLER J K, MORALES J M, et al. Inhomogeneous Markov models for describing driving patterns[J]. IEEE Transactions on Smart Grid, 2017, 8 (2): 581- 588. |
| 20 | 邢强, 陈中, 冷钊莹, 等. 基于实时交通信息的电动汽车路径规划和充电导航策略[J]. 中国电机工程学报, 2020, 40 (2): 534- 550. |
| XING Qiang, CHEN Zhong, LENG Zhaoying, et al. Route planning and charging navigation strategy for electric vehicles based on real-time traffic information[J]. Proceedings of the CSEE, 2020, 40 (2): 534- 550. | |
| 21 | 新能源汽车国家大数据联盟. 中国小型纯电动乘用车出行大数据报告[R]. 北京: 新能源汽车国家大数据联盟, 2020. |
| National Big Data Alliance of New Energy Vehicles. Big data report on China's small pure electric passenger vehicle travel[R]. Beijing: National Big Data Alliance of New Energy Vehicles, 2020. | |
| 22 | 禤宗衡, 荆朝霞, 叶文圣, 等. 考虑储能灵活能量状态的新型电能量市场机制[J]. 电网技术, 2022, 46 (10): 3810- 3823. |
| XUAN Zongheng, JING Zhaoxia, YE Wensheng, et al. New energy market mechanism considering flexible state of energy in energy storage[J]. Power System Technology, 2022, 46 (10): 3810- 3823. | |
| 23 |
徐俊俊, 程奕凌, 张腾飞, 等. 计及充电行为特征与可调性的电动汽车集群优化调度[J]. 电力系统自动化, 2023, 47 (23): 23- 32.
DOI |
|
XU Junjun, CHENG Yiling, ZHANG Tengfei, et al. Optimal scheduling of electric vehicle clusters considering characteristics and adjustability of charging behavior[J]. Automation of Electric Power Systems, 2023, 47 (23): 23- 32.
DOI |
|
| 24 | 王秀茹, 黄小庆, 段建焱, 等. 电池健康状态对电动汽车充电负荷计算的影响[J]. 南方电网技术, 2023, 17 (7): 65- 73. |
| WANG Xiuru, HUANG Xiaoqing, DUAN Jianyan, et al. Influence of state of health of battery on EV charging load calculation[J]. Southern Power System Technology, 2023, 17 (7): 65- 73. | |
| 25 |
SAXENA S, HENDRICKS C, PECHT M. Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges[J]. Journal of Power Sources, 2016, 327, 394- 400.
DOI |
| 26 |
周椿奇, 向月, 童话, 等. 轨迹数据驱动的电动汽车充电需求及V2G可调控容量估计[J]. 电力系统自动化, 2022, 46 (12): 46- 55.
DOI |
|
ZHOU Chunqi, XIANG Yue, TONG Hua, et al. Trajectory-data-driven estimation of electric vehicle charging demand and vechicle-to-grid regulable capacity[J]. Automation of Electric Power Systems, 2022, 46 (12): 46- 55.
DOI |
|
| 27 | 祁兵, 陈淑娇, 李彬, 等. 计及用户满意度的可调节负荷资源需求响应优化策略研究[J]. 内蒙古电力技术, 2023, 41 (3): 43- 50. |
| QI Bing, CHEN Shujiao, LI Bin, et al. Research on demand response optimization strategy of adjustable load resource considering user satisfaction[J]. Inner Mongolia Electric Power, 2023, 41 (3): 43- 50. | |
| 28 |
YANG W, XIANG Y, LIU J Y, et al. Agent-based modeling for scale evolution of plug-in electric vehicles and charging demand[J]. IEEE Transactions on Power Systems, 2018, 33 (2): 1915- 1925.
DOI |
| 29 | KUNDUR P. Power system stability and control[M]. McGraw-Hill, Companies, Inc, 1994. |
| 30 |
RAUTIAINEN A, REPO S, JARVENTAUSTA P, et al. Statistical charging load modeling of PHEVs in electricity distribution networks using national travel survey data[J]. IEEE Transactions on Smart Grid, 2012, 3 (4): 1650- 1659.
DOI |
| 31 | DENG X S, ZHANG Q, LI Y, et al. Hierarchical distributed frequency regulation strategy of electric vehicle cluster considering demand charging load optimization[C]//2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS). Jinan, China. IEEE, 2020: 959–969. |
| 32 | 潘振宁, 余涛, 王克英. 考虑多方主体利益的大规模电动汽车分布式实时协同优化[J]. 中国电机工程学报, 2019, 39 (12): 3528- 3541. |
| PAN Zhenning, YU Tao, WANG Keying. Decentralized coordinated dispatch for real-time optimization of massive electric vehicles considering various interests[J]. Proceedings of the CSEE, 2019, 39 (12): 3528- 3541. | |
| 33 | SONG M, AMELIN M. Purchase bidding strategy for a retailer with flexible demands in day-ahead electricity market[C]//2017 IEEE Manchester PowerTech. Manchester, UK. IEEE, 2017: 1. |
| [1] | 谭玲玲, 张文龙, 康志豪, 叶平峰, 高业豪, 张玉敏. 计及惯量响应与一次调频参数优化的新能源基地构网型储能规划[J]. 中国电力, 2025, 58(7): 147-161. |
| [2] | 周楷, 陶正顺, 潘庭龙, 许德智. 基于CCS-MPC的储能锂电池组均衡控制策略[J]. 中国电力, 2025, 58(7): 177-186. |
| [3] | 张睿骁, 梁利, 王定美. 新能源场站快速频率响应分析与高效测试装置设计[J]. 中国电力, 2025, 58(5): 144-151. |
| [4] | 郑佳俊, 段小宇, 胡泽春, 胡晓锐, 朱彬. 组件式移动充电设施布局优化方法与投放策略[J]. 中国电力, 2025, 58(4): 107-118. |
| [5] | 苏大威, 范旖晖, 赵天辉, 潘虹锦, 黄佑会, 王岗, 贾勇勇. 基于价格激励的城市公共充电站填谷潜力评估[J]. 中国电力, 2025, 58(4): 131-139. |
| [6] | 颜俊, 罗宇杰, 颜安, 贺伟, 韩涛, 杨军. 计及用户响应特性的电动汽车充电站设备优化配置方法[J]. 中国电力, 2025, 58(4): 140-147. |
| [7] | 廖建, 张耀, 张贝西, 董浩淼, 李嘉兴, 孙乾皓. 考虑电动汽车需求响应的交直流混合配电网智能软开关与储能装置鲁棒联合规划方法[J]. 中国电力, 2025, 58(10): 82-96. |
| [8] | 么钟然, 孙丽颖. 考虑线路阻抗的分布式储能SOC均衡控制策略[J]. 中国电力, 2024, 57(9): 238-246. |
| [9] | 邵冲, 胡荣义, 余姣, 王明典. 考虑荷电与储氢状态的风光氢储系统动态控制仿真模型[J]. 中国电力, 2024, 57(7): 109-124. |
| [10] | 朱沐雨, 马宏忠, 郭鹏宇, 宣文婧. 典型调峰/调频工况下储能电池组荷电状态估计[J]. 中国电力, 2024, 57(6): 18-26. |
| [11] | 马宏忠, 宣文婧, 朱沐雨, 陈悦林. 基于LWOA-LSTM的大容量锂电池SOC估计[J]. 中国电力, 2024, 57(6): 37-44. |
| [12] | 曹宇, 胡鹏飞, 蔡婉琪, 王曦, 江道灼, 梁一桥. 基于MMC的超级电容与蓄电池混合储能系统及其混合同步控制策略[J]. 中国电力, 2024, 57(6): 78-89. |
| [13] | 丁屹峰, 曾爽, 张宝群, 王立永, 刘畅, 付智, 张吉. 光伏-直流智能充电桩有序充电策略与应用效果[J]. 中国电力, 2024, 57(5): 70-77. |
| [14] | 吕志鹏, 宋振浩, 李立生, 刘洋. 含电动汽车的工业园区综合能源系统优化调度[J]. 中国电力, 2024, 57(4): 25-31. |
| [15] | 高月芬, 员成博, 孔凡鹏, 王雪松. 需求响应激励下耦合电转气、碳捕集设备的综合能源系统优化[J]. 中国电力, 2024, 57(4): 32-41. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编
