中国电力 ›› 2025, Vol. 58 ›› Issue (4): 159-169.DOI: 10.11930/j.issn.1004-9649.202406029
• 面向新型电力系统的智慧用能优化与控制 • 上一篇 下一篇
收稿日期:
2024-06-07
录用日期:
2024-09-05
发布日期:
2025-04-23
出版日期:
2025-04-28
作者简介:
基金资助:
DENG Buyuan1(), YUAN Zhi1(
), LI Ji2
Received:
2024-06-07
Accepted:
2024-09-05
Online:
2025-04-23
Published:
2025-04-28
Supported by:
摘要:
随着新能源装机规模不断扩大,传统碳捕集热电厂因承担供热任务而存在碳捕集效率低、调节能力不足的现象。为了促进新能源消纳和减少碳排放,同时提升热电厂的调峰能力,构建一种氢储能与富氧燃烧碳捕集机组联合运行模型,并进行低碳经济优化调度。首先,分析富氧燃烧碳捕集与氢储能协调运行机理,并构建系统架构;其次,计及空分制氧与氢储能氧气回收,分别建立富氧燃烧碳捕集机组与氢储能系统模型;最后,通过碳交易和调峰辅助服务市场提升电厂降碳、调峰主动性,以系统运行成本最优为目标,建立考虑氢储能的富氧燃烧碳捕集电厂优化调度模型。算例结果表明,所提模型不但可以有效提高系统低碳性与经济性,还可以提升热电厂的调节能力,促进新能源消纳。
邓卜元, 袁至, 李骥. 考虑氢储能的富氧燃烧碳捕集电厂热电联合优化调度[J]. 中国电力, 2025, 58(4): 159-169.
DENG Buyuan, YUAN Zhi, LI Ji. Optimized Coordinated Scheduling of Oxy-Fuel Combustion Carbon Capture Combined Heat and Power Plant Considering Hydrogen Energy Storage[J]. Electric Power, 2025, 58(4): 159-169.
参数 | 数值 | 参数 | 数值 | |||
40 | ||||||
600 | 40 | |||||
98 | 0.303 |
表 1 富氧燃烧碳捕集技术基本参数
Table 1 Basic parameters of oxy-fuel capture technology
参数 | 数值 | 参数 | 数值 | |||
40 | ||||||
600 | 40 | |||||
98 | 0.303 |
参数 | 数值 | 参数 | 数值 | |||
电解槽容量/MW | 50 | 燃料电池容量/MW | 50 | |||
电解槽效率/% | 70 | 燃料电池效率/% | 70 | |||
电解槽运维成本/(元·m–3) | 22 | 燃料电池运维成本/(元·m–3) | 100 |
表 2 氢储能参数
Table 2 Hydrogen energy storage parameters
参数 | 数值 | 参数 | 数值 | |||
电解槽容量/MW | 50 | 燃料电池容量/MW | 50 | |||
电解槽效率/% | 70 | 燃料电池效率/% | 70 | |||
电解槽运维成本/(元·m–3) | 22 | 燃料电池运维成本/(元·m–3) | 100 |
运行场景 | 燃烧后碳捕集 | 富氧燃烧碳捕集 | 氢储能 | |||
1 | √ | × | × | |||
2 | × | √ | × | |||
3 | × | √ | √ |
表 3 场景信息
Table 3 Scenario information
运行场景 | 燃烧后碳捕集 | 富氧燃烧碳捕集 | 氢储能 | |||
1 | √ | × | × | |||
2 | × | √ | × | |||
3 | × | √ | √ |
场景 | 成本/元 | 碳排放量/t | 风光消纳率/% | |||||||||||||
煤耗 | 运维 | CO2运封 | 碳交易 | 调峰 | 总计 | |||||||||||
1 | – | – | 90.71 | |||||||||||||
2 | – | – | 496.81 | 95.57 | ||||||||||||
3 | – | – | 88.15 | 100.00 |
表 4 各场景系统运行成本
Table 4 System operating costs in each scenario
场景 | 成本/元 | 碳排放量/t | 风光消纳率/% | |||||||||||||
煤耗 | 运维 | CO2运封 | 碳交易 | 调峰 | 总计 | |||||||||||
1 | – | – | 90.71 | |||||||||||||
2 | – | – | 496.81 | 95.57 | ||||||||||||
3 | – | – | 88.15 | 100.00 |
1 | 邱燕超. 三组数据看我国能源发展“稳”与“进”[N]. 中国电力报, 2023-08-01(001). |
2 |
KUMAR A, TIWARI A K. Solar-assisted post-combustion carbon-capturing system retrofitted with coal-fired power plant towards net-zero future: a review[J]. Journal of CO2 Utilization, 2022, 65, 102241.
DOI |
3 | 于建平, 余一平, 许剑冰, 等. 基于自适应准谐振控制的储能抑制广义强迫振荡传播方法[J]. 电力系统保护与控制, 2024, 52 (5): 128- 138. |
YU Jianping, YU Yiping, XU Jianbing, et al. Energy storage suppression method of generalized forced oscillation propagation based on adaptive quasi-resonant control[J]. Power System Protection and Control, 2024, 52 (5): 128- 138. | |
4 | 王小惠, 何兆禹, 徐超, 等. 斜温层单罐储热同时蓄放热过程动态特性模拟[J]. 中国电机工程学报, 2019, 39 (20): 5989- 5998, 6179. |
WANG Xiaohui, HE Zhaoyu, XU Chao, et al. Dynamic simulations on simultaneous charging/discharging process of water thermocline storage tank[J]. Proceedings of the CSEE, 2019, 39 (20): 5989- 5998, 6179. | |
5 | 袁桂丽, 钟飞, 张睿, 等. 考虑碳捕集及需求响应的虚拟电厂热电联合优化调度[J]. 电网技术, 2023, 47 (11): 4458- 4467. |
YUAN Guili, ZHONG Fei, ZHANG Rui, et al. Combined heat and power scheduling optimization for virtual power plants considering carbon capture and demand response[J]. Power System Technology, 2023, 47 (11): 4458- 4467. | |
6 |
张帆, 林志坚, 方飞. 国内外碳捕集技术发展现状分析[J]. 能源化工, 2022, 43 (5): 13- 19.
DOI |
ZHANG Fan, LIN Zhijian, FANG Fei. Analysis on the development status of carbon capture technology[J]. Energy Chemical Industry, 2022, 43 (5): 13- 19.
DOI |
|
7 |
JI Z, KANG C Q, CHEN Q X, et al. Low-carbon power system dispatch incorporating carbon capture power plants[J]. IEEE Transactions on Power Systems, 2013, 28 (4): 4615- 4623.
DOI |
8 | 寇洋, 武家辉, 张华, 等. 考虑碳捕集与CVaR的电力系统低碳经济调度[J]. 电力系统保护与控制, 2023, 51 (11): 131- 140. |
KOU Yang, WU Jiahui, ZHANG Hua, et al. Low carbon economic dispatch for a power system considering carbon capture and CVaR[J]. Power System Protection and Control, 2023, 51 (11): 131- 140. | |
9 |
CHEN X H, WU X, LEE K Y. The mutual benefits of renewables and carbon capture: achieved by an artificial intelligent scheduling strategy[J]. Energy Conversion and Management, 2021, 233, 113856.
DOI |
10 |
YADAV S, MONDAL S S. A review on the progress and prospects of oxy-fuel carbon capture and sequestration (CCS) technology[J]. Fuel, 2022, 308, 122057.
DOI |
11 |
VU T T, LIM Y I, SONG D, et al. Techno-economic analysis of ultra-supercritical power plants using air-and oxy-combustion circulating fluidized bed with and without CO2 capture[J]. Energy, 2020, 194, 116855.
DOI |
12 |
CHEN C X, YANG S X. The energy demand and environmental impacts of oxy-fuel combustion vs. post-combustion capture in China[J]. Energy Strategy Reviews, 2021, 38, 100701.
DOI |
13 | 张文伟, 王维庆, 樊小朝, 等. 利用风电制氧的富氧燃煤电厂低碳能源系统容量优化配置[J]. 电力系统保护与控制, 2023, 51 (5): 70- 83. |
ZHANG Wenwei, WANG Weiqing, FAN Xiaochao, et al. Optimal capacity configuration of a low carbon energy system of oxygen-enriched coal-fired power plant using wind power to produce oxygen[J]. Power System Protection and Control, 2023, 51 (5): 70- 83. | |
14 |
MARCHENKO O V, SOLOMIN S V. Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast[J]. International Journal of Hydrogen Energy, 2017, 42 (15): 9361- 9370.
DOI |
15 |
刘妍, 胡志坚, 陈锦鹏, 等. 含碳捕集电厂与氢能多元利用的综合能源系统低碳经济调度[J]. 电力系统自动化, 2024, 48 (1): 31- 40.
DOI |
LlU Yan, HU Zhijian, CHEN Jinpeng, et al. Low-carbon economic dispatch of integrated energy system considering carbon capture power plant and multi-utilization of hydrogen energy[J]. Automation of Electric Power Systems, 2024, 48 (1): 31- 40.
DOI |
|
16 | 崔杨, 管彦琦, 李佳宇, 等. 考虑碳捕集机组与氢储能系统协调运行的源荷储低碳经济调度[J]. 电网技术, 2024, 48 (6): 2307- 2316. |
CUI Yang, GUAN Yanqi, LI Jiayu, et al. Source-load-storage low-carbon economic dispatching considering coordinated operation of carbon capture unit and hydrogen energy storage system[J]. Power System Technology, 2024, 48 (6): 2307- 2316. | |
17 | 高大明, 陈鸿伟, 杨建蒙, 等. 循环流化床锅炉富氧燃烧与CO2捕集发电机组运行能耗影响因素分析[J]. 中国电机工程学报, 2019, 39 (5): 1387- 1396. |
GAO Daming, CHEN Hongwei, YANG Jianmeng, et al. Influence factor analysis of circulating fluidized bed boiler oxy-fuel combustion and CO2 capture power generation unit operation energy consumption[J]. Proceedings of the CSEE, 2019, 39 (5): 1387- 1396. | |
18 |
吕运强, 杨鹏, 董增波, 等. 考虑氢-氧双循环系统运行灵活性的协调优化调度[J]. 电力系统自动化, 2023, 47 (15): 91- 99.
DOI |
LYU Yunqiang, YANG Peng, DONG Zengbo, et al. Coordinated optimal dispatch considering operation flexibility of hydrogen-oxygen dual-cycle system[J]. Automation of Electric Power Systems, 2023, 47 (15): 91- 99.
DOI |
|
19 | 崔杨, 曾鹏, 仲悟之, 等. 考虑富氧燃烧技术的电–气–热综合能源系统低碳经济调度[J]. 中国电机工程学报, 2021, 41 (2): 592- 608. |
CUI Yang, ZENG Peng, ZHONG Wuzhi, et al. Low-carbon economic dispatch of electro-gas-thermal integrated energy system based on oxy-combustion technology[J]. Proceedings of the CSEE, 2021, 41 (2): 592- 608. | |
20 | 冯帅, 袁至, 李骥, 等. 碳交易背景下基于综合协调储能系统的碳捕集电厂优化调度[J]. 中国电力, 2023, 56 (6): 139- 147. |
FENG Shuai, YUAN Zhi, LI Ji, et al. Optimal scheduling of carbon capture power plants based on integrated coordinated energy storage system under the background of carbon trading[J]. Electric Power, 2023, 56 (6): 139- 147. | |
21 | 侯俊禹, 袁至, 王维庆, 等. 利用建筑虚拟储能提升风电消纳能力的电热联合系统优化调度方法[J]. 太阳能学报, 2024, 45 (5): 206- 216. |
HOU Junyu, YUAN Zhi, WANG Weiqing, et al. Optimal scheduling method of combined electric and thermal system by using building virtual energy storage to improve wind power accommodation capability[J]. Acta Energiae Solaris Sinica, 2024, 45 (5): 206- 216. | |
22 | 生态环境部. 2021、2022年度全国碳排放权交易配额总量设定与分配实施方案(发电行业)(国环规气候〔2023〕1号)[Z]. |
23 | 国家能源局西北监管局. 西北区域电力辅助服务管理实施细则(西北监能市场〔2023〕95号)[Z]. |
24 | 袁桂丽, 刘骅骐, 禹建芳, 等. 含碳捕集热电机组的虚拟电厂热电联合优化调度[J]. 中国电机工程学报, 2022, 42 (12): 4440- 4449. |
YUAN Guili, LIU Huaqi, YU Jianfang, et al. Combined heat and power optimal dispatching in virtual power plant with carbon capture cogeneration unit[J]. Proceedings of the CSEE, 2022, 42 (12): 4440- 4449. | |
25 | 袁桂丽, 王琳博, 王宝源. 基于虚拟电厂“热电解耦”的负荷优化调度及经济效益分析[J]. 中国电机工程学报, 2017, 37 (17): 4974- 4985, 5217. |
YUAN Guili, WANG Linbo, WANG Baoyuan. Optimal dispatch of heat-power load and economy benefit analysis based on decoupling of heat and power of virtual power plant[J]. Proceedings of the CSEE, 2017, 37 (17): 4974- 4985, 5217. |
[1] | 周建华, 梁昌誉, 史林军, 李杨, 易文飞. 计及阶梯式碳交易机制的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 77-87. |
[2] | 许文俊, 马刚, 姚云婷, 孟宇翔, 李伟康. 考虑绿证-碳交易机制与混氢天然气的工业园区多能优化调度[J]. 中国电力, 2025, 58(2): 154-163. |
[3] | 胡景成, 范耘豪, 朱同, 陈珍萍. 基于同态加密的综合能源系统完全分布式低碳经济调度[J]. 中国电力, 2025, 58(2): 164-175. |
[4] | 冯兴, 杨威, 张安安, 张曦, 李茜, 雷宪章. 双向可逆的集中式电氢耦合系统容量优化配置[J]. 中国电力, 2024, 57(8): 1-11. |
[5] | 邱洁, 梁财豪, 朱永强, 夏瑞华. 考虑氢能储运特性的配电网集群划分与氢能系统选址定容策略[J]. 中国电力, 2024, 57(8): 12-22. |
[6] | 邵冲, 胡荣义, 余姣, 王明典. 考虑荷电与储氢状态的风光氢储系统动态控制仿真模型[J]. 中国电力, 2024, 57(7): 109-124. |
[7] | 陈兴龙, 曹喜民, 陈洁, 刘俊, 张育超, 包洪印. 绿证-碳交易机制下热电灵活响应的园区综合能源系统优化调度[J]. 中国电力, 2024, 57(6): 110-120. |
[8] | 张彩玲, 王爽, 葛淑娜, 潘登, 张岩, 韩伟, 段文岩. 计及灵活需求响应和碳-绿证交易的综合能源系统优化调度[J]. 中国电力, 2024, 57(5): 14-25. |
[9] | 王云龙, 韩璐, 罗树林, 吴涛. 集成电动汽车的家庭电热综合能源系统负荷调度优化[J]. 中国电力, 2024, 57(5): 39-49. |
[10] | 谭玲玲, 汤伟, 楚冬青, 于子涵, 吉兴全, 张玉敏. 考虑电-氢一体化的微电网低碳-经济协同优化调度[J]. 中国电力, 2024, 57(5): 137-148. |
[11] | 张冲标, 钱辰雯, 俞红燕, 彭燕玲, 陈金威. 基于ADMM的多场景县域多微电网交互运行策略[J]. 中国电力, 2024, 57(2): 9-18. |
[12] | 张栋顺, 全恒立, 谢桦, 许志鸿, 陶雅芸, 王慧圣. 考虑碳交易机制与氢混天然气的园区综合能源系统调度策略[J]. 中国电力, 2024, 57(2): 183-193. |
[13] | 梁健, 王蒙, 杨亚欣, 胡杨, 姚尔人. 基于压缩空气储能与增强型地热的三联产系统热力学分析[J]. 中国电力, 2024, 57(1): 209-218. |
[14] | 孟宇翔, 马刚, 李豪, 李伟康, 徐健玮, 李天宇. 基于绿证-阶梯式碳交易交互的源荷互补调度优化[J]. 中国电力, 2023, 56(9): 149-156. |
[15] | 侯建军, 付喜亮, 李染生, 刘贵喜, 孙燕平, 孙利, 梁占伟. 基于㶲分析的能量梯级利用供热变工况运行优化研究[J]. 中国电力, 2023, 56(8): 230-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||