中国电力 ›› 2024, Vol. 57 ›› Issue (8): 1-11.DOI: 10.11930/j.issn.1004-9649.202312101
收稿日期:
2023-12-28
出版日期:
2024-08-28
发布日期:
2024-08-24
作者简介:
冯兴(1999—),男,硕士研究生, 从事电氢耦合综合能源系统研究,E-mail:1501699446@qq.com基金资助:
Xing FENG(), Wei YANG(
), Anan ZHANG, Xi ZHANG, Qian LI, Xianzhang LEI
Received:
2023-12-28
Online:
2024-08-28
Published:
2024-08-24
Supported by:
摘要:
针对风光富集地区大型新能源发电厂的弃风弃光问题,利用可逆固体氧化物燃料电池(reversible solid oxide fuel cell,RSOC)结合氢储能的双向转换特性消纳多余风光资源,提出一种双向可逆的集中式RSOC电氢耦合系统容量优化配置方法。首先构建集中式RSOC电氢耦合系统架构,建立发电系统、电氢转换系统等模型;其次考虑燃料电池特性建立RSOC性能衰减模型,考虑特高压通道可用传输能力不确定性生成典型场景;进而建立集中式RSOC双层容量规划模型,上层以运营期收益最大为目标优化RSOC、储氢库容量配置,下层以综合成本最低为目标优化各设备出力,联合粒子群算法与Cplex求解器进行求解。最后通过算例分析,验证RSOC的加入提高了系统经济性及环境效益,同时投资灵敏度分析表明电池单位容量成本是制约系统经济运行的重要因素。
冯兴, 杨威, 张安安, 张曦, 李茜, 雷宪章. 双向可逆的集中式电氢耦合系统容量优化配置[J]. 中国电力, 2024, 57(8): 1-11.
Xing FENG, Wei YANG, Anan ZHANG, Xi ZHANG, Qian LI, Xianzhang LEI. Capacity Optimization Configuration of a Bidirectional Reversible Centralized Electrohydrogen Coupling System[J]. Electric Power, 2024, 57(8): 1-11.
最大 速度 | 粒子 数目 | 学习 因子 | 惯性 权重 | 最大 迭代 次数 | SOFC 热 效率 | SOFC 电 效率 | SOEC 耗热 系数 | 储氢 装置 充放 效率 | 固定 资产 残值 率/% | 风机 光伏 寿命/ 年 | ||||||||||
10 | 20 | 1.5、2 | 0.4~0.9 | 40 | 0.25 | 0.56 | 0.4 | 0.98 | 5 | 20 |
表 1 算法相关参数
Table 1 Algorithm related parameters
最大 速度 | 粒子 数目 | 学习 因子 | 惯性 权重 | 最大 迭代 次数 | SOFC 热 效率 | SOFC 电 效率 | SOEC 耗热 系数 | 储氢 装置 充放 效率 | 固定 资产 残值 率/% | 风机 光伏 寿命/ 年 | ||||||||||
10 | 20 | 1.5、2 | 0.4~0.9 | 40 | 0.25 | 0.56 | 0.4 | 0.98 | 5 | 20 |
RSOC 投资成本/ (元·kW–1) | 储氢库 投资成本/ (元·kg–1) | 设备运行 维护成本/ (元·(kW·h)–1) | 氢气储存 成本/ (元·(Nm3)–1) | 运输成本/(元·(Nm3)–1) | 氢气售 卖价格/ (元·(Nm3)–1) | 氢制电增发 电量收益/ (元·(kW·h)–1) | 余热利用 收益/ (元·(kW·h)–1) | 特高压输电 通道利用收益/ (元·(kW·h)–1) | ||||||||
0.04~0.16 | 1~1.9 | 1.2~1.5(液),1.145~2.1(气) | 3.5~5 | 0.14~0.22 | 0.25~0.4 | 0.02~0.12 |
表 2 主要环节价格
Table 2 Prices of main links
RSOC 投资成本/ (元·kW–1) | 储氢库 投资成本/ (元·kg–1) | 设备运行 维护成本/ (元·(kW·h)–1) | 氢气储存 成本/ (元·(Nm3)–1) | 运输成本/(元·(Nm3)–1) | 氢气售 卖价格/ (元·(Nm3)–1) | 氢制电增发 电量收益/ (元·(kW·h)–1) | 余热利用 收益/ (元·(kW·h)–1) | 特高压输电 通道利用收益/ (元·(kW·h)–1) | ||||||||
0.04~0.16 | 1~1.9 | 1.2~1.5(液),1.145~2.1(气) | 3.5~5 | 0.14~0.22 | 0.25~0.4 | 0.02~0.12 |
方 案 | 蓄电 池/ MW | 电解 槽/ MW | RSOC/ MW | 储氢 库/t | 投资成 本/万元 | 弃风弃光量/ ((MW·h)·年–1) | 运营 周期/ 年 | 投资 回收 期/年 | ||||||||
1 | 11.3 | 0 | 0 | 0 | 4.0 | 0 | ||||||||||
2 | 0 | 12.8 | 0 | 6.4 | 8.0 | 7.2 | ||||||||||
3 | 0 | 0 | 12.2 | 5.1 | 8.8 | 7.6 | ||||||||||
4 | 0 | 0 | 14.6 | 6.2 | 0.0 | 9.1 | 7.9 |
表 3 4种方案指标对比
Table 3 Comparison of parameters of four schemes
方 案 | 蓄电 池/ MW | 电解 槽/ MW | RSOC/ MW | 储氢 库/t | 投资成 本/万元 | 弃风弃光量/ ((MW·h)·年–1) | 运营 周期/ 年 | 投资 回收 期/年 | ||||||||
1 | 11.3 | 0 | 0 | 0 | 4.0 | 0 | ||||||||||
2 | 0 | 12.8 | 0 | 6.4 | 8.0 | 7.2 | ||||||||||
3 | 0 | 0 | 12.2 | 5.1 | 8.8 | 7.6 | ||||||||||
4 | 0 | 0 | 14.6 | 6.2 | 0.0 | 9.1 | 7.9 |
总外送电量/ (MW·h) | 氢产量/t | 污染物减 排量/t | 余热回收量/ (MW·h) | |||
523.7 |
表 4 系统年运行关键指标
Table 4 Key annual operating volumes of the system
总外送电量/ (MW·h) | 氢产量/t | 污染物减 排量/t | 余热回收量/ (MW·h) | |||
523.7 |
1 |
周强, 汪宁渤, 冉亮, 等. 中国新能源弃风弃光原因分析及前景探究[J]. 中国电力, 2016, 49 (9): 7- 12, 159.
DOI |
ZHOU Qiang, WANG Ningbo, RAN Liang, et al. Cause analysis on wind and photovoltaic energy curtailment and prospect research in China[J]. Electric Power, 2016, 49 (9): 7- 12, 159.
DOI |
|
2 | LIN X, LIU W F, HE J M, et al. Research on medium and long-term new energy consumption in Shanxi Province[C]//2021 6th Asia Conference on Power and Electrical Engineering (ACPEE). Chongqing, China. IEEE, 2021: 1700–1704. |
3 | 刘联涛, 刘飞, 吉平, 等. 储能参与新能源消纳的优化控制策略[J]. 中国电力, 2023, 56 (3): 137- 143. |
LIU Liantao, LIU Fei, JI Ping, et al. Research on optimal control strategy of energy storage for improving new energy consumption[J]. Electric Power, 2023, 56 (3): 137- 143. | |
4 |
LIU J Z, WANG Q H, SONG Z Q, et al. Bottlenecks and countermeasures of high-penetration renewable energy development in China[J]. Engineering, 2021, 7 (11): 1611- 1622.
DOI |
5 |
姜海洋, 杜尔顺, 朱桂萍, 等. 面向高比例可再生能源电力系统的季节性储能综述与展望[J]. 电力系统自动化, 2020, 44 (19): 194- 207.
DOI |
JIANG Haiyang, DU Ershun, ZHU Guiping, et al. Review and prospect of seasonal energy storage for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44 (19): 194- 207.
DOI |
|
6 | 徐国栋, 程浩忠, 马紫峰, 等. 用于缓解电网调峰压力的储能系统规划方法综述[J]. 电力自动化设备, 2017, 37 (8): 3- 11. |
XU Guodong, CHENG Haozhong, MA Zifeng, et al. Overview of ESS planning methods for alleviating peak-shaving pressure of grid[J]. Electric Power Automation Equipment, 2017, 37 (8): 3- 11. | |
7 |
潘光胜, 顾伟, 张会岩, 等. 面向高比例可再生能源消纳的电氢能源系统[J]. 电力系统自动化, 2020, 44 (23): 1- 10.
DOI |
PAN Guangsheng, GU Wei, ZHANG Huiyan, et al. Electricity and hydrogen energy system towards accomodation of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44 (23): 1- 10.
DOI |
|
8 | 熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41 (9): 31- 38. |
XIONG Yufeng, CHEN Laijun, ZHENG Tianwen, et al. Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric Power Automation Equipment, 2021, 41 (9): 31- 38. | |
9 | 李笑竹, 陈来军, 殷骏, 等. 面向低碳供能的多园区共享氢储能系统容量规划[J]. 高电压技术, 2022, 48 (7): 2534- 2544. |
LI Xiaozhu, CHEN Laijun, YIN Jun, et al. Capacity planning of multiple parks shared hydrogen energy storage system for low-carbon energy supply[J]. High Voltage Engineering, 2022, 48 (7): 2534- 2544. | |
10 | 司杨, 陈来军, 陈晓弢, 等. 基于分布鲁棒的风-氢混合系统氢储能容量优化配置[J]. 电力自动化设备, 2021, 41 (10): 3- 10. |
SI Yang, CHEN Laijun, CHEN Xiaotao, et al. Optimal capacity allocation of hydrogen energy storage in wind-hydrogen hybrid system based on distributionally robust[J]. Electric Power Automation Equipment, 2021, 41 (10): 3- 10. | |
11 | 孙雯, 陈紫薇, 张玉琼, 等. 基于动态规划的SOFC冷热电三联供综合能源系统日前经济调度[J]. 中国电机工程学报, 2022, 42 (21): 7775- 7783. |
SUN Wen, CHEN Ziwei, ZHANG Yuqiong, et al. Economic day-ahead scheduling of SOFC-based integrated tri-generation energy system using dynamic programming[J]. Proceedings of the CSEE, 2022, 42 (21): 7775- 7783. | |
12 | 李远征, 任潇, 葛磊蛟, 等. 基于可逆固体氧化物电池的电氢耦合微电网全生命周期规划-运营研究[J]. 中国电机工程学报, 2024, 44 (13): 5169- 5185. |
LI Yuanzheng, REN Xiao, GE Leijiao, et al. Research for entire lifecycle planning-operation of electric-hydrogen coupled microgrid based on reversible solid oxide cell[J]. Proceedings of the CSEE, 2024, 44 (13): 5169- 5185. | |
13 |
BUFFO G, FERRERO D, SANTARELLI M, et al. Energy and environmental analysis of a flexible Power-to-X plant based on reversible solid oxide cells (rSOCs) for an urban district[J]. Journal of Energy Storage, 2020, 29, 101314.
DOI |
14 | GDF A, EGM B, LM C, et al. Comparative life cycle assessment of two different SOFC-based cogeneration systems with thermal energy storage integrated into a single-family house nanogrid[J]. Applied Energy, 285: 1-20. |
15 | 范宏, 邢梦晴, 王兰坤, 等. 考虑氢储的风光氢综合能源系统多时间尺度随机生产模拟[J]. 上海交通大学学报, 2024, 58 (6): 881- 892. |
FAN Hong, XING Mengqing, WANG Lankun, et al. Multi-time scale probabilistic production simulation of wind-solar hydrogen integrated energy system considering hydrogen storage[J]. Journal of Shanghai Jiaotong University, 2024, 58 (6): 881- 892. | |
16 | 邱高, 刘俊勇, 刘友波, 等. 风电外送通道极限传输能力的自适应向量机估计[J]. 电工技术学报, 2018, 33 (14): 3342- 3352. |
QIU Gao, LIU Junyong, LIU Youbo, et al. Adaptive support vector machine estimation for total transfer capability of wind power exporting corridors[J]. Transactions of China Electrotechnical Society, 2018, 33 (14): 3342- 3352. | |
17 | 高赐威, 王崴, 陈涛. 基于可逆固体氧化物电池的电氢一体化能源站容量规划[J]. 中国电机工程学报, 2022, 42 (17): 6155- 6169. |
GAO Ciwei, WANG Wei, CHEN Tao. Capacity planning of electric-hydrogen integrated energy station based on reversible solid oxide battery[J]. Proceedings of the CSEE, 2022, 42 (17): 6155- 6169. | |
18 |
GIAP V T, KIM Y S, LEE Y D, et al. Waste heat utilization in reversible solid oxide fuel cell systems for electrical energy storage: fuel recirculation design and feasibility analysis[J]. Journal of Energy Storage, 2020, 29, 101434.
DOI |
19 | NAEINI M, LAI H X, COTTON J S, et al. A mathematical model for prediction of long-term degradation effects in solid oxide fuel cells[J]. Industrial & Engineering Chemistry Research, 2021, 60 (3): 1326- 1340. |
20 |
HAGEN A K, BARFOD R, HENDRIKSEN P V, et al. Degradation of anode supported SOFCs as a function of temperature and current load[J]. Journal of the Electrochemical Society, 2006, 153 (6): A1165.
DOI |
21 |
CHEN Y R, WANG M, LISO V, et al. Parametric analysis and optimization for exergoeconomic performance of a combined system based on solid oxide fuel cell-gas turbine and supercritical carbon dioxide Brayton cycle[J]. Energy Conversion and Management, 2019, 186, 66- 81.
DOI |
22 | 崔杨, 李崇钢, 张节潭, 等. 考虑直流通道灵活性的含光热电站系统供热期协调调度方法[J]. 高电压技术, 2022, 48 (6): 2054- 2064. |
CUI Yang, LI Chonggang, ZHANG Jietan, et al. Coordinated scheduling method in heating season of concentrating solar power system considering flexibility of HVDC tieline[J]. High Voltage Engineering, 2022, 48 (6): 2054- 2064. | |
23 | 曾鸣, 刘英新, 周鹏程, 等. 综合能源系统建模及效益评价体系综述与展望[J]. 电网技术, 2018, 42 (6): 1697- 1708. |
ZENG Ming, LIU Yingxin, ZHOU Pengcheng, et al. Review and prospects of integrated energy system modeling and benefit evaluation[J]. Power System Technology, 2018, 42 (6): 1697- 1708. | |
24 |
NUGGEHALLI SAMPATHKUMAR S, AUBIN P, COUTURIER K, et al. Degradation study of a reversible solid oxide cell (rSOC) short stack using distribution of relaxation times (DRT) analysis[J]. International Journal of Hydrogen Energy, 2022, 47 (18): 10175- 10193.
DOI |
25 | 国家能源局. 2019年前三季度风电并网运行情况[R]. 北京. 2019. |
26 | CHU W J, ZHANG Y J. The efficiency and economic feasibility study on wind-hydrogen system[C]//2020 IEEE Sustainable Power and Energy Conference (iSPEC). Chengdu, China. IEEE, 2020: 18–35. |
27 | 国家能源局. “风光储输”示范工程: 打造新能源领域的“中国标准”[R]. 北京. 2013. |
[1] | 邱洁, 梁财豪, 朱永强, 夏瑞华. 考虑氢能储运特性的配电网集群划分与氢能系统选址定容策略[J]. 中国电力, 2024, 57(8): 12-22. |
[2] | 邵冲, 胡荣义, 余姣, 王明典. 考虑荷电与储氢状态的风光氢储系统动态控制仿真模型[J]. 中国电力, 2024, 57(7): 109-124. |
[3] | 卢子敬, 李子寿, 郭相国, 杨博. 基于多目标人工蜂鸟算法的电-氢混合储能系统最优配置[J]. 中国电力, 2023, 56(7): 33-42. |
[4] | 彭生江, 杨德州, 孙传帅, 袁铁江, 刘永成. 基于氢负荷需求的氢能系统容量规划[J]. 中国电力, 2023, 56(7): 13-20,32. |
[5] | 胡臻达, 姜文瑾, 张林垚, 杨晓东, 邹艺超, 王凯. 基于改进猫群算法的氢储能容量优化配置[J]. 中国电力, 2023, 56(10): 33-42. |
[6] | 窦真兰, 袁本峰, 张春雁, 肖国萍, 王建强. 基于可逆固体氧化物电池的风光氢综合能源系统容量规划[J]. 中国电力, 2023, 56(10): 22-32. |
[7] | 孙子茹, 艾芊, 居来提?阿不力孜, 何峰, 袁少伟. 考虑季节性氢储及期货式碳交易的综合能源系统年度规划研究[J]. 中国电力, 2022, 55(8): 2-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||