中国电力 ›› 2023, Vol. 56 ›› Issue (10): 22-32.DOI: 10.11930/j.issn.1004-9649.202211106
• 面向新型电力系统的氢能及其系统集成控制关键技术 • 上一篇 下一篇
窦真兰1(), 袁本峰2(
), 张春雁1, 肖国萍2, 王建强2
收稿日期:
2022-11-30
出版日期:
2023-10-28
发布日期:
2023-10-31
作者简介:
窦真兰(1980—),女,通信作者,博士,高级工程师,从事综合能源系统及其控制技术等研究,E-mail: douzhl@126.com基金资助:
Zhenlan DOU1(), Benfeng YUAN2(
), Chunyan ZHANG1, Guoping XIAO2, Jianqiang WANG2
Received:
2022-11-30
Online:
2023-10-28
Published:
2023-10-31
Supported by:
摘要:
可逆固体氧化物电池(reversible solid oxide cell,RSOC)作为新型氢储能技术,有利于促进可再生能源消纳、提高系统运行效率。为此,提出一种基于RSOC技术的风光氢综合能源系统规划设计方法。首先,建立风光氢综合能源系统规划模型,考虑RSOC辅助系统(balance of plant,BOP)功耗占比高、功率调节受限等约束。其次,以系统年弃电缺电量、投资成本最小化为目标,采用粒子群优化算法求解该规划问题。最后,针对氢气价格、RSOC成本等不确定性因素,开展系统规划灵敏度分析。仿真结果表明该方法能够获得合理的配置方案,大规模减小系统弃电缺电频率,提升系统资源配置的灵活性。
窦真兰, 袁本峰, 张春雁, 肖国萍, 王建强. 基于可逆固体氧化物电池的风光氢综合能源系统容量规划[J]. 中国电力, 2023, 56(10): 22-32.
Zhenlan DOU, Benfeng YUAN, Chunyan ZHANG, Guoping XIAO, Jianqiang WANG. Capacity Planning of Integrated Energy System of Wind Photovoltaic and Hydrogen Based on Reversible Solid Oxide Cell[J]. Electric Power, 2023, 56(10): 22-32.
季节 | 风速/(m·s–1) | 辐照强度/(W·m–2) | 负载负荷/kW | |||
春季 | 6.31 | 193.5 | 643 | |||
夏季 | 5.10 | 337.3 | 651 | |||
秋季 | 5.53 | 311.2 | 636 | |||
冬季 | 7.30 | 163.5 | 580 |
表 1 不同季节的平均风速、光照强度和负载负荷分布[22]
Table 1 The average wind speed, global irradiance and load in four seasons[22]
季节 | 风速/(m·s–1) | 辐照强度/(W·m–2) | 负载负荷/kW | |||
春季 | 6.31 | 193.5 | 643 | |||
夏季 | 5.10 | 337.3 | 651 | |||
秋季 | 5.53 | 311.2 | 636 | |||
冬季 | 7.30 | 163.5 | 580 |
设备 | 投资成本 | 维护成本 | 更新成本 | 寿命/年 | ||||
风机 | 7 250/(元·kW–1) | 580/(元·(kW·年)–1) | — | 20 | ||||
光伏 | 7 000/(元·kW–1) | 560/(元·(kW·年)–1) | — | 20 | ||||
RSOC | 16 244/(元·kW–1) | 650/(元·(kW·年)–1) | 4 873/(元·kW–1) | 5 | ||||
储氢罐 | 15 000/(元·kg–1) | 450/ (元·(kg·年)–1) | 8 000/(元·kg–1) | 5 |
表 2 设备投资成本[22]
Table 2 The capital cost of each unit[22]
设备 | 投资成本 | 维护成本 | 更新成本 | 寿命/年 | ||||
风机 | 7 250/(元·kW–1) | 580/(元·(kW·年)–1) | — | 20 | ||||
光伏 | 7 000/(元·kW–1) | 560/(元·(kW·年)–1) | — | 20 | ||||
RSOC | 16 244/(元·kW–1) | 650/(元·(kW·年)–1) | 4 873/(元·kW–1) | 5 | ||||
储氢罐 | 15 000/(元·kg–1) | 450/ (元·(kg·年)–1) | 8 000/(元·kg–1) | 5 |
污染物 种类 | 排放量/ (g·(kW·h)–1) | 环境价值/ (元·kg–1) | 惩罚数量级/ (元·kg–1) | |||
CO2 | 86.4725 | 0.02275 | 0.01768 | |||
SO2 | 0.1083~3.9446 | 5.9995 | 4.6501 | |||
NOx | 0.1547~3.0938 | 7.995 | 6.1997 |
表 3 传统燃煤发电排污相关参数[27]
Table 3 The related parameters of the pollutant discharge of the traditional coal-fired power generation[27]
污染物 种类 | 排放量/ (g·(kW·h)–1) | 环境价值/ (元·kg–1) | 惩罚数量级/ (元·kg–1) | |||
CO2 | 86.4725 | 0.02275 | 0.01768 | |||
SO2 | 0.1083~3.9446 | 5.9995 | 4.6501 | |||
NOx | 0.1547~3.0938 | 7.995 | 6.1997 |
模型参数 | 数值 | 模型参数 | 数值 | |||
Kpu | 0.0000668 | PSOEC,max/kW | 6 000 | |||
Kvg | 0.4496 | PSOFC,min/kW | 60 | |||
| 0.0383 | PSOFC,max/kW | 3 000 | |||
Keh,air | 0.0374 | USOEC,min/kW | 600 | |||
| 0.1973 | USOEC,max/kW | 600 | |||
Kcp,air | 0.1364 | Ptank,min/MPa | 20 | |||
PSOEC,min/kW | 120 | Ptank,max/MPa | 45 |
表 4 规划模型输入参数
Table 4 Input parameters of the planning model
模型参数 | 数值 | 模型参数 | 数值 | |||
Kpu | 0.0000668 | PSOEC,max/kW | 6 000 | |||
Kvg | 0.4496 | PSOFC,min/kW | 60 | |||
| 0.0383 | PSOFC,max/kW | 3 000 | |||
Keh,air | 0.0374 | USOEC,min/kW | 600 | |||
| 0.1973 | USOEC,max/kW | 600 | |||
Kcp,air | 0.1364 | Ptank,min/MPa | 20 | |||
PSOEC,min/kW | 120 | Ptank,max/MPa | 45 |
设备配置容量 | 数值 | |
风力发电机组额定功率/kW | 727 | |
光伏阵列额定功率/kW | 1 231 | |
RSOC系统额定功率/kW | 792 | |
储氢罐体积/m3 | 17 |
表 5 系统最优配置容量
Table 5 The optimal capacity of each unit
设备配置容量 | 数值 | |
风力发电机组额定功率/kW | 727 | |
光伏阵列额定功率/kW | 1 231 | |
RSOC系统额定功率/kW | 792 | |
储氢罐体积/m3 | 17 |
系统 | 年弃电缺电量/(MW·h) | ηmis/% | 年风光消纳率/% | |||
含RSOC氢电转换 | 440 | 8 | 96 | |||
不含RSOC氢电转换 | 5 722 | 102 | 49 |
表 6 有无RSOC的综合能源系统源-荷匹配性比较
Table 6 Comparison of the source-load matching with and without the RSOC system
系统 | 年弃电缺电量/(MW·h) | ηmis/% | 年风光消纳率/% | |||
含RSOC氢电转换 | 440 | 8 | 96 | |||
不含RSOC氢电转换 | 5 722 | 102 | 49 |
1 |
王成山, 于波, 肖峻, 等. 平滑可再生能源发电系统输出波动的储能系统容量优化方法[J]. 中国电机工程学报, 2012, 32 (16): 1- 8.
DOI |
WANG Chengshan, YU Bo, XIAO Jun, et al. Sizing of energy storage systems for output smoothing of renewable energy systems[J]. Proceedings of the CSEE, 2012, 32 (16): 1- 8.
DOI |
|
2 |
刘坚, 钟财富. 我国氢能发展现状与前景展望[J]. 中国能源, 2019, 41 (2): 32- 36.
DOI |
LIU Jian, ZHONG Caifu. Current status and prospects of hydrogen energy development in China[J]. Energy of China, 2019, 41 (2): 32- 36.
DOI |
|
3 | 李洋洋, 邓欣涛, 古俊杰, 等. 碱性水电解制氢系统建模综述及展望[J]. 汽车工程, 2022, 44 (4): 567- 582. |
LI Yangyang, DENG Xintao, GU Junjie, et al. Comprehensive review and prospect of the modeling of alkaline water electrolysis system for hydrogen production[J]. Automotive Engineering, 2022, 44 (4): 567- 582. | |
4 |
何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40 (9): 4762- 4773.
DOI |
HE Zexing, SHI Chengxiang, CHEN Zhichao, et al. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40 (9): 4762- 4773.
DOI |
|
5 |
NI M, LEUNG M K H, LEUNG D Y C. Parametric study of solid oxide steam electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32 (13): 2305- 2313.
DOI |
6 |
CABEZAS M D, FRANCO J I, FASOLI H J. Optimization of self-regulated hydrogen production from photovoltaic energy[J]. International Journal of Hydrogen Energy, 2020, 45 (17): 10391- 10397.
DOI |
7 |
ISMAIL T M, RAMZY K, ELNAGHI B E, et al. Using matlab to model and simulate a photovoltaic system to produce hydrogen[J]. Energy Conversion and Management, 2019, 185, 101- 129.
DOI |
8 |
YANG Z M, ZHANG G P, LIN B H. Performance evaluation and optimum analysis of a photovoltaic-driven electrolyzer system for hydrogen production[J]. International Journal of Hydrogen Energy, 2015, 40 (8): 3170- 3179.
DOI |
9 |
BARTOLUCCI L, CORDINER S, MULONE V, et al. Fuel cell based hybrid renewable energy systems for off-grid telecom stations: data analysis and system optimization[J]. Applied Energy, 2019, 252, 113386.
DOI |
10 |
HASSANZADEHFARD H, TOORYAN F, COLLINS E R, et al. Design and optimum energy management of a hybrid renewable energy system based on efficient various hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45 (55): 30113- 30128.
DOI |
11 | BIDI F K, DAMOUR C, GRONDIN D, et al. Optimal fuel cell and electrolyser Energy Management System for microgrid[C]//IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Lisbon, Portugal. IEEE, 2019: 2197–2202. |
12 |
KONSTANTINOPOULOS S A, ANASTASIADIS A G, VOKAS G A, et al. Optimal management of hydrogen storage in stochastic smart microgrid operation[J]. International Journal of Hydrogen Energy, 2018, 43 (1): 490- 499.
DOI |
13 |
GHARIBI M, ASKARZADEH A. Size and power exchange optimization of a grid-connected diesel generator-photovoltaic-fuel cell hybrid energy system considering reliability, cost and renewability[J]. International Journal of Hydrogen Energy, 2019, 44 (47): 25428- 25441.
DOI |
14 | 彭生江, 杨德州, 孙传帅, 等. 基于氢负荷需求的氢能系统容量规划[J]. 中国电力, 2023, 56 (7): 13- 20, 32. |
PENG Shengjiang, YANG Dezhou, SUN Chuanshuai, et al. Capacity planning of hydrogen production and storage system based on hydrogen load demand[J]. Electric Power, 2023, 56 (7): 13- 20, 32. | |
15 | 白虎, 冯宇, 叶晓峰, 等. 平板型固体氧化物燃料电池的流场设计及优化概述[J]. 陶瓷学报, 2022, 43 (1): 28- 44. |
BAI Hu, FENG Yu, YE Xiaofeng, et al. Progress in flow field design and optimization of solid oxide fuel cells[J]. Journal of Ceramics, 2022, 43 (1): 28- 44. | |
16 |
FRANK M, DEJA R, PETERS R, et al. Bypassing renewable variability with a reversible solid oxide cell plant[J]. Applied Energy, 2018, 217, 101- 112.
DOI |
17 |
ALYOUSEF Y, KENDALL K. Characterization of the electrochemical performance of micro-tubular solid oxide fuel cell (SOFC)[J]. Journal of Taibah University for Science, 2009, 2 (1): 14- 21.
DOI |
18 | YANG J F, CHEN J G, FAN Y M, et al. Preparation, structure and properties of Pr1.2Sr0.8NiO4 cathode materials for intermediate-temperature solid oxide fuel cells [J]. Acta Physico-Chimica Sinica, 2011, 28 (1): 95- 99. |
19 | 张小坤, 吕大伟, 尹中强, 等. 平板型固体氧化物燃料电池内温度分布规律[J]. 中国电力, 2023, 56 (6): 123- 131. |
ZHANG Xiaokun, LV Dawei, YIN Zhongqiang, et al. Temperature distribution in flat solid oxide fuel cell[J]. Electric Power, 2023, 56 (6): 123- 131. | |
20 |
LOTOTSKYY M, NYALLANG NYAMSI S, PASUPATHI S, et al. A concept of combined cooling, heating and power system utilising solar power and based on reversible solid oxide fuel cell and metal hydrides[J]. International Journal of Hydrogen Energy, 2018, 43 (40): 18650- 18663.
DOI |
21 |
XI F, RUAN X J, RAZMJOOY N. Optimal configuration and energy management for combined solar chimney, solid oxide electrolysis, and fuel cell: a case study in Iran[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2023, 45 (4): 9794- 9814.
DOI |
22 |
LI G L, YUAN B F, GE M, et al. Capacity configuration optimization of a hybrid renewable energy system with hydrogen storage[J]. International Journal of Green Energy, 2022, 19 (14): 1583- 1599.
DOI |
23 |
LI G L, XIAO G P, GUAN C Z, et al. Assessment of thermodynamic performance of a 20 kW high-temperature electrolysis system using advanced exergy analysis[J]. Fuel Cells, 2021, 21 (6): 550- 565.
DOI |
24 |
FRANK E, GORRE J, RUOSS F, et al. Calculation and analysis of efficiencies and annual performances of power-to-gas systems[J]. Applied Energy, 2018, 218, 217- 231.
DOI |
25 |
欧阳斌, 袁志昌, 陆超, 等. 考虑源-荷-储多能互补的冷-热-电综合能源系统优化运行研究[J]. 发电技术, 2020, 41 (1): 19- 29.
DOI |
OYANG Bin, YUAN Zhichang, LU Chao, et al. Research on optimal operation of cold-thermal-electric integrated energy system considering source-load-storage multi-energy complementarity[J]. Power Generation Technology, 2020, 41 (1): 19- 29.
DOI |
|
26 | KONG L G, CAI G W, XUE S, et al. Modeling and coordinated control strategy of large scale grid-connected wind/photovoltaic/energy storage hybrid energy conversion system[J]. Mathematical Problems in Engineering, 2015, 2015, 1- 14. |
27 | 孔令国. 风光氢综合能源系统优化配置与协调控制策略研究[D]. 北京: 华北电力大学, 2017. |
KONG Lingguo. Study on optimal configuration and coordinated control strategy of wind, solar and hydrogen integrated energy system[D]. Beijing: North China Electric Power University, 2017. | |
28 | 邱利民, 孙大明, 等. 基于REGEN的大功率斯特林型脉管制冷机多目标性能优化[C]//第九届全国低温工程大会论文集. 合肥, 2009: 24–29. |
29 |
盛浩云, 杨静, 张国平, 等. 基于改进PSO算法的微能源网优化配置研究[J]. 电网与清洁能源, 2021, 37 (8): 23- 31.
DOI |
SHENG Haoyun, YANG Jing, ZHANG Guoping, et al. Optimal configuration of micro energy network based on improved PSO algorithm[J]. Power System and Clean Energy, 2021, 37 (8): 23- 31.
DOI |
[1] | 周建华, 梁昌誉, 史林军, 李杨, 易文飞. 计及阶梯式碳交易机制的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 77-87. |
[2] | 张玉敏, 尹延宾, 吉兴全, 叶平峰, 孙东磊, 宋爱全. 计及热网不同运行状态下灵活性供给能力的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 88-102. |
[3] | 胡景成, 范耘豪, 朱同, 陈珍萍. 基于同态加密的综合能源系统完全分布式低碳经济调度[J]. 中国电力, 2025, 58(2): 164-175. |
[4] | 陆海, 张浩, 陈晓云, 周苏洋. 基于双层博弈的多能源网络协同规划方法[J]. 中国电力, 2025, 58(1): 93-99. |
[5] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
[6] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
[7] | 高明非, 韩中合, 赵斌, 李鹏, 吴迪. 区域综合能源系统多类型储能协同优化与运行策略[J]. 中国电力, 2024, 57(9): 205-216. |
[8] | 冯兴, 杨威, 张安安, 张曦, 李茜, 雷宪章. 双向可逆的集中式电氢耦合系统容量优化配置[J]. 中国电力, 2024, 57(8): 1-11. |
[9] | 邱洁, 梁财豪, 朱永强, 夏瑞华. 考虑氢能储运特性的配电网集群划分与氢能系统选址定容策略[J]. 中国电力, 2024, 57(8): 12-22. |
[10] | 王辉, 周珂锐, 吴作辉, 邹智超, 李欣. 含电转气和碳捕集耦合的综合能源系统多时间尺度优化调度[J]. 中国电力, 2024, 57(8): 214-226. |
[11] | 邵冲, 胡荣义, 余姣, 王明典. 考虑荷电与储氢状态的风光氢储系统动态控制仿真模型[J]. 中国电力, 2024, 57(7): 109-124. |
[12] | 景巍巍, 王强, 程好, 王博, 岳付昌, 王沉, 王文学. 电热综合能源系统稳态与区间潮流计算快速解耦新方法[J]. 中国电力, 2024, 57(7): 203-213. |
[13] | 苏娟, 李拓, 刘峻玮, 夏越, 杜松怀. 综合能源系统下虚拟储能建模方法与应用场景研究综述及展望[J]. 中国电力, 2024, 57(6): 53-68. |
[14] | 陈兴龙, 曹喜民, 陈洁, 刘俊, 张育超, 包洪印. 绿证-碳交易机制下热电灵活响应的园区综合能源系统优化调度[J]. 中国电力, 2024, 57(6): 110-120. |
[15] | 胡福年, 张彭成, 周小博, 陈军. 计及灵活性资源的综合能源系统源荷协调优化调度[J]. 中国电力, 2024, 57(5): 2-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||