中国电力 ›› 2025, Vol. 58 ›› Issue (2): 88-102.DOI: 10.11930/j.issn.1004-9649.202407088
• 面向智慧低碳发展的城镇分布式灵活资源建模与运行决策研究 • 上一篇 下一篇
张玉敏1(), 尹延宾1(
), 吉兴全1(
), 叶平峰2, 孙东磊3, 宋爱全4
收稿日期:
2024-07-22
出版日期:
2025-02-28
发布日期:
2025-02-25
作者简介:
张玉敏(1986—),女,博士,副教授,从事电力系统运行与控制研究,E-mail:yuminzhang2019@sdust.edu.cn基金资助:
Yumin ZHANG1(), Yanbin Yin1(
), Xingquan JI1(
), Pingfeng YE2, Donglei SUN3, Aiquan SONG4
Received:
2024-07-22
Online:
2025-02-28
Published:
2025-02-25
Supported by:
摘要:
可再生能源渗透率的不断提高使得系统净负荷的波动问题日渐突出,对系统运行提出了更高的灵活性要求。为此,提出了一种计及热网不同运行状态下灵活性供给能力的综合能源系统优化调度策略。首先,针对风电和负荷的不确定性,基于区间优化思想确定系统次小时运行灵活性需求;其次,通过剖析热负荷和电净负荷的4种变化关系对系统运行灵活性的影响,并计及热网动态特性下的热电联产机组上/下行灵活性供给机理,推导不同运行状态下的热网灵活性供给模型;然后,明晰储能装置充电、放电、非充非放等运行状态以及能量限额特性,推导储能提供次小时运行灵活性的数学模型,确立综合能源系统小时尺度优化调度决策和次小时运行灵活性约束间的协调关系,从而构建计及源-网-储多环节运行灵活性的IES优化调度模型;最后,以综合能源E6-H8和E57-H16系统为例进行测试,验证了该模型可以通过优化储能及热网灵活性资源,有效提高系统运行的灵活性。
张玉敏, 尹延宾, 吉兴全, 叶平峰, 孙东磊, 宋爱全. 计及热网不同运行状态下灵活性供给能力的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 88-102.
Yumin ZHANG, Yanbin Yin, Xingquan JI, Pingfeng YE, Donglei SUN, Aiquan SONG. Optimal Dispatch of Integrated Electric-Heat Energy System Considering Supply Flexibility of Heat Networks Under Different Operation States[J]. Electric Power, 2025, 58(2): 88-102.
方案 | 储能装置 | 考虑热网造成的系统灵 活性短缺和灵活性供给 | 考虑热网 动态特性 | 考虑运行灵 活性约束 | ||||
1 | √ | |||||||
2 | √ | √ | ||||||
3 | √ | √ | ||||||
4 | √ | |||||||
5 | √ | √ | √ | |||||
6 | √ | √ | √ | √ |
表 1 不同方案考虑的设备及调度策略
Table 1 Equipment and scheduling strategies considered for different cases
方案 | 储能装置 | 考虑热网造成的系统灵 活性短缺和灵活性供给 | 考虑热网 动态特性 | 考虑运行灵 活性约束 | ||||
1 | √ | |||||||
2 | √ | √ | ||||||
3 | √ | √ | ||||||
4 | √ | |||||||
5 | √ | √ | √ | |||||
6 | √ | √ | √ | √ |
方案 | 系统运行 成本/万元 | 上行灵活性 裕度/MW | 下行灵活性 裕度/MW | |||
文献 [ | — | — | — | |||
文献 [ | 161.119 | 336.078 | 296.670 | |||
5 | 152.467 | 598.098 | 520.684 |
表 2 不同热网灵活性模型运行成本和灵活性裕度
Table 2 Operating costs and flexibility margins for different heat network flexibility models
方案 | 系统运行 成本/万元 | 上行灵活性 裕度/MW | 下行灵活性 裕度/MW | |||
文献 [ | — | — | — | |||
文献 [ | 161.119 | 336.078 | 296.670 | |||
5 | 152.467 | 598.098 | 520.684 |
σ/MW | 系统总运行成本/万元 | |||||||
方案2 | 方案3 | 方案5 | 方案6 | |||||
0 | 156.485 | 151.515 | 151.685 | 150.017 | ||||
20 | — | 154.630 | 151.795 | 150.017 | ||||
40 | — | — | — | 150.143 |
表 3 不同场景优化结果对比
Table 3 Comparison of optimization results for different cases
σ/MW | 系统总运行成本/万元 | |||||||
方案2 | 方案3 | 方案5 | 方案6 | |||||
0 | 156.485 | 151.515 | 151.685 | 150.017 | ||||
20 | — | 154.630 | 151.795 | 150.017 | ||||
40 | — | — | — | 150.143 |
方案 | 启停成本/元 | 弃风成本/元 | 失负荷成本/元 | |||
2 | 0 | |||||
3 | 0 | |||||
5 | 0 | |||||
6 | 887.390 | 0 |
表 4 不同方案启停、弃风和失负荷成本
Table 4 Start-up, shutdown, wind abandonment and lost load costs for different cases
方案 | 启停成本/元 | 弃风成本/元 | 失负荷成本/元 | |||
2 | 0 | |||||
3 | 0 | |||||
5 | 0 | |||||
6 | 887.390 | 0 |
σ/MW | 系统总运行成本/万元 | |||||||
方案2 | 方案3 | 方案5 | 方案6 | |||||
0 | 340.816 | 336.273 | 333.235 | 331.471 | ||||
50 | — | 338.695 | 334.747 | 331.471 | ||||
100 | — | — | — | 332.584 |
表 5 不同场景优化结果对比
Table 5 Comparison of optimization results in different cases
σ/MW | 系统总运行成本/万元 | |||||||
方案2 | 方案3 | 方案5 | 方案6 | |||||
0 | 340.816 | 336.273 | 333.235 | 331.471 | ||||
50 | — | 338.695 | 334.747 | 331.471 | ||||
100 | — | — | — | 332.584 |
方案 | 启停成本/元 | 弃风成本/元 | 失负荷成本/元 | |||
2 | 0 | |||||
3 | 0 | |||||
5 | 0 | |||||
6 | 0 |
表 6 IES E57-H16不同方案下的启停成本、弃风成本和失负荷成本
Table 6 Start-up, shutdown, wind abandonment and lost load costs for different cases
方案 | 启停成本/元 | 弃风成本/元 | 失负荷成本/元 | |||
2 | 0 | |||||
3 | 0 | |||||
5 | 0 | |||||
6 | 0 |
1 | ZHANG Y M, SUN P K, JI X Q, et al. Low-carbon economic dispatch of integrated energy systems considering extended carbon emission flow[J]. Journal of Modern Power Systems and Clean Energy, 2024, PP (99): 1- 12. |
2 | LI P, YANG M, WU Q W. Confidence interval based distributionally robust real-time economic dispatch approach considering wind power accommodation risk[J]. IEEE Transactions on Sustainable Energy, 2020, 12 (1): 58- 69. |
3 | 李茜, 苟璐旸, 李樊, 等. 面向提供系统灵活性的风电场内机组优化运行[J]. 中国电力, 2022, 55 (8): 23- 30. |
LI Qian, GOU Luyang, LI Fan, et al. System flexibility-oriented optimized unit operation in wind farms[J]. Electric Power, 2022, 55 (8): 23- 30. | |
4 |
WANG K, WANG C F, YAO W L, et al. Embedding P2P transaction into demand response exchange: a cooperative demand response management framework for IES[J]. Applied Energy, 2024, 367, 123319.
DOI |
5 | 胡福年, 张彭成, 周小博, 等. 计及灵活性资源的综合能源系统源荷协调优化调度[J]. 中国电力, 2024, 57 (5): 2- 13. |
HU Funian, ZHANG Pengcheng, ZHOU Xiaobo, et al. Coordinated optimal scheduling of source and load in integrated energy system considering flexible resources[J]. Electric Power, 2024, 57 (5): 2- 13. | |
6 | 武昭原, 周明, 王剑晓, 等. 双碳目标下提升电力系统灵活性的市场机制综述[J]. 中国电机工程学报, 2022, 42 (21): 7746- 7763. |
WU Zhaoyuan, ZHOU Ming, WANG Jianxiao, et al. Review on market mechanism to enhance the flexibility of power system under the dual-carbon target[J]. Proceedings of the CSEE, 2022, 42 (21): 7746- 7763. | |
7 | 孟秋, 廖凯, 郑舜玮, 等. 考虑灵活性区域互济的电力系统源-网-储协同规划[J]. 电网技术, 2024, 48 (8): 3165- 3174. |
MENG Qiu, LIAO Kai, ZHENG Shunwei, et al. Source-grid-storage coordinated planning for power system considering flexibility mutual aid among regions[J]. Power System Technology, 2024, 48 (8): 3165- 3174. | |
8 | 马骞, 苏京轩, 邹金, 等. 考虑机组灵活性的高比例新能源电力系统机组检修策略[J/OL]. 南方电网技术, (2024-04-29) [2024-10-10]. https://kns.cnki.net/kcms/detail/44.1643.tk.20240425.2231.010.html. |
MA Qian, SU Jingxuan, ZOU Jin, et al. Maintenance strategy for high proportion renewable energy power system considering flexibility of units[J]. China Southern Power Grid Technology, (2024-04-29) [2024-10-10]. https://kns.cnki.net/kcms/detail/44.1643.tk.20240425.2231.010.html. | |
9 | 张俊涛, 甘霖, 程春田, 等. 大规模风光并网条件下水电灵活性量化及提升方法[J]. 电网技术, 2020, 44 (9): 3227- 3239. |
ZHANG Juntao, GAN Lin, CHENG Chuntian, et al. Quantification and promotion of hydropower flexibility with large-scale wind and solar power incorporated into grid[J]. Power System Technology, 2020, 44 (9): 3227- 3239. | |
10 |
杨寅平, 曾沅, 秦超, 等. 面向深度调峰的火电机组灵活性改造规划模型[J]. 电力系统自动化, 2021, 45 (17): 79- 88.
DOI |
YANG Yinping, ZENG Yuan, QIN Chao, et al. Planning model for flexibility reformation of thermal power units for deep peak regulation[J]. Automation of Electric Power Systems, 2021, 45 (17): 79- 88.
DOI |
|
11 |
王洪坤, 王守相, 潘志新, 等. 含高渗透分布式电源配电网灵活性提升优化调度方法[J]. 电力系统自动化, 2018, 42 (15): 86- 93.
DOI |
WANG Hongkun, WANG Shouxiang, PAN Zhixin, et al. Optimized dispatching method for flexibility improvement of distribution network with high-penetration distributed generation[J]. Automation of Electric Power Systems, 2018, 42 (15): 86- 93.
DOI |
|
12 |
LI X, LI W M, ZHANG R F, et al. Collaborative scheduling and flexibility assessment of integrated electricity and district heating systems utilizing thermal inertia of district heating network and aggregated buildings[J]. Applied Energy, 2020, 258, 114021.
DOI |
13 |
WANG W, JING S T, SUN Y, et al. Combined heat and power control considering thermal inertia of district heating network for flexible electric power regulation[J]. Energy, 2019, 169, 988- 999.
DOI |
14 |
董帅, 王成福, 徐士杰, 等. 计及网络动态特性的电—气—热综合能源系统日前优化调度[J]. 电力系统自动化, 2018, 42 (13): 12- 19.
DOI |
DONG Shuai, WANG Chengfu, XU Shijie, et al. Day-ahead optimal scheduling of electricity-gas-heat integrated energy system considering dynamic characteristics of networks[J]. Automation of Electric Power Systems, 2018, 42 (13): 12- 19.
DOI |
|
15 | 吉兴全, 刘健, 张玉敏, 等. 计及运行灵活性约束的综合能源系统优化调度[J]. 电力系统自动化, 2022, 46 (16): 84- 94. |
JI Xingquan, LIU Jian, ZHANG Yumin, et al. Optimal dispatching of integrated energy system considering operation flexibility constraints[J]. Automation of Electric Power Systems, 2022, 46 (16): 84- 94. | |
16 | 王秋实, 杨明, 李鹏, 等. 计及热网灵活性恢复过程的电热综合能源系统鲁棒超前调度[J]. 高电压技术, 2023, 49 (8): 3173- 3186. |
WANG Qiushi, YANG Ming, LI Peng, et al. Robust look-ahead dispatch of electricity-heat integrated energy system considering the flexibility recovery period of heating networks[J]. High Voltage Engineering, 2023, 49 (8): 3173- 3186. | |
17 | 黄大为, 史博铭, 于娜, 等. 热电联产机组利用热网动态特性提升实时灵活性的自调度策略[J]. 中国电机工程学报, 2024, 44 (20): 7983- 7995. |
HUANG Dawei, SHI Boming, YU Na, et al. Self-scheduling strategy to improve the real-time flexibility of CHP unit by utilizing heat network dynamic characteristics[J]. Proceedings of the CSEE, 2024, 44 (20): 7983- 7995. | |
18 |
KOOHI-FAYEGH S, ROSEN M A. A review of energy storage types, applications and recent developments[J]. Journal of Energy Storage, 2020, 27, 101047.
DOI |
19 |
张利, 杨建, 菅学辉, 等. 考虑次小时尺度运行灵活性的含储能机组组合[J]. 电力系统自动化, 2018, 42 (16): 48- 56.
DOI |
ZHANG Li, YANG Jian, JIAN Xuehui, et al. Unit commitment with energy storage considering operation flexibility at sub-hourly time-scales[J]. Automation of Electric Power Systems, 2018, 42 (16): 48- 56.
DOI |
|
20 |
SONG Y G, XIA M C, YANG L, et al. Multi-granularity source-load-storage cooperative dispatch based on combined robust optimization and stochastic optimization for a highway service area micro-energy grid[J]. Renewable Energy, 2023, 205, 747- 762.
DOI |
21 |
鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40 (13): 147- 158.
DOI |
LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40 (13): 147- 158.
DOI |
|
22 | 张玉敏, 孙鹏凯, 孟祥剑, 等. 基于碳势-能源价格双响应的综合能源系统低碳经济调度[J]. 电力系统自动化, 2024, 48 (9): 21- 33. |
ZHANG Yumin, SUN Pengkai, MENG Xiangjian, et al. Low-carbon economic dispatching of integrated energy system based on dual response of carbon intensity and energy price[J]. Automation of Electric Power Systems, 2024, 48 (9): 21- 33. | |
23 | 陈飞雄, 蔡明杰, 郭奕鑫, 等. 计及网络动态特性的电-热互联系统仿射优化法[J]. 中国电机工程学报, 2024, 44 (12): 4715- 4732. |
CHEN Feixiong, CAI Mingjie, GUO Yixin, et al. An affine arithmetic-based optimization method of combined electric and heat system considering dynamic characteristics of network[J]. Proceedings of the CSEE, 2024, 44 (12): 4715- 4732. | |
24 |
BOUFFARD F, GALIANA F D. An electricity market with a probabilistic spinning reserve criterion[J]. IEEE Transactions on Power Systems, 2004, 19 (1): 300- 307.
DOI |
[1] | 沈舒仪, 王国腾, 但扬清, 孙飞飞, 黄莹, 徐政. 频率偏差与电压刚度约束下多馈入直流优化调度方法[J]. 中国电力, 2025, 58(3): 132-141. |
[2] | 刘雨姗, 陈俊儒, 常喜强, 刘牧阳. 构网型储能变流器并网性能的多层级评价指标体系及应用[J]. 中国电力, 2025, 58(3): 193-203. |
[3] | 李明冰, 李强, 管西洋, 周皓阳, 卢瑞, 冯延坤. 市场环境下考虑多元用户侧资源协同的虚拟电厂低碳优化调度[J]. 中国电力, 2025, 58(2): 66-76. |
[4] | 周建华, 梁昌誉, 史林军, 李杨, 易文飞. 计及阶梯式碳交易机制的综合能源系统优化调度[J]. 中国电力, 2025, 58(2): 77-87. |
[5] | 闫志彬, 李立, 阳鹏, 宋蕙慧, 车彬, 靳盘龙. 考虑构网型储能支撑能力的微电网优化调度策略[J]. 中国电力, 2025, 58(2): 103-110. |
[6] | 许文俊, 马刚, 姚云婷, 孟宇翔, 李伟康. 考虑绿证-碳交易机制与混氢天然气的工业园区多能优化调度[J]. 中国电力, 2025, 58(2): 154-163. |
[7] | 胡景成, 范耘豪, 朱同, 陈珍萍. 基于同态加密的综合能源系统完全分布式低碳经济调度[J]. 中国电力, 2025, 58(2): 164-175. |
[8] | 陆海, 张浩, 陈晓云, 周苏洋. 基于双层博弈的多能源网络协同规划方法[J]. 中国电力, 2025, 58(1): 93-99. |
[9] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
[10] | 谭玲玲, 汤伟, 楚冬青, 李竞锐, 张玉敏, 吉兴全. 基于主从博弈的电热氢综合能源系统优化运行[J]. 中国电力, 2024, 57(9): 136-145. |
[11] | 孙东磊, 王宪, 孙毅, 孟祥飞, 张涌琛, 张玉敏. 基于多面体不确定集合的电力系统灵活性量化评估方法[J]. 中国电力, 2024, 57(9): 146-155. |
[12] | 高明非, 韩中合, 赵斌, 李鹏, 吴迪. 区域综合能源系统多类型储能协同优化与运行策略[J]. 中国电力, 2024, 57(9): 205-216. |
[13] | 王辉, 周珂锐, 吴作辉, 邹智超, 李欣. 含电转气和碳捕集耦合的综合能源系统多时间尺度优化调度[J]. 中国电力, 2024, 57(8): 214-226. |
[14] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王焕昌, 张帅, 赵凤展. 计及运行灵活性的中压配电系统源-网-储协同扩展规划[J]. 中国电力, 2024, 57(7): 98-108. |
[15] | 景巍巍, 王强, 程好, 王博, 岳付昌, 王沉, 王文学. 电热综合能源系统稳态与区间潮流计算快速解耦新方法[J]. 中国电力, 2024, 57(7): 203-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||