中国电力 ›› 2024, Vol. 57 ›› Issue (7): 109-124.DOI: 10.11930/j.issn.1004-9649.202402052

• 新型电力系统储能规划与运行关键技术 • 上一篇    下一篇

考虑荷电与储氢状态的风光氢储系统动态控制仿真模型

邵冲1(), 胡荣义2(), 余姣1(), 王明典2()   

  1. 1. 国网甘肃省电力公司,甘肃 兰州 730000
    2. 国网甘肃省电力公司张掖供电公司,甘肃 张掖 734000
  • 收稿日期:2024-02-21 接受日期:2024-06-29 出版日期:2024-07-28 发布日期:2024-07-23
  • 作者简介:邵冲(1984—),男,博士,高级工程师,从事电力系统分析、电网运行技术研究,E-mail:shaoch_dkzx@gs.sgcc.com.cn
    胡荣义(1982—),男,硕士,高级工程师,从事电网运行、经营管理,E-mail:hury@gs.sgcc.com.cn
    余姣(1987—),女,高级工程师,从事电网运行、策略分析、涉网试验,E-mail:165257348@qq.com
    王明典(1994—),男,通信作者,工程师,从事电网调度运行、电力系统仿真建模研究,E-mail:1689962722@qq.com
  • 基金资助:
    国网甘肃省电力公司管理科技项目(522707230006);甘肃省科技重大专项计划(22ZD11GA312)。

Dynamic Modeling and Control Strategy for Hybrid Energy Storage System Considering State of Charge and Storage State of Hydrogen

Chong SHAO1(), Rongyi HU2(), Jiao YU1(), Mingdian WANG2()   

  1. 1. State Grid Gansu Electric Power Company, Lanzhou 730000, China
    2. State Grid Gansu Electric Power Company Zhangye Power Supply Company, Zhangye 734000, China
  • Received:2024-02-21 Accepted:2024-06-29 Online:2024-07-28 Published:2024-07-23
  • Supported by:
    This work is supported by Science & Technology Project of State Grid Gansu Electric Power Company (No.522707230006) and Science & Technology Major Special Program of Gansu Province (No.22ZD11GA312).

摘要:

储能是平抑可再生能源波动的重要手段之一。考虑内部气体跨膜传输现象,基于质子交换膜电解槽的组件结构以及电化学和热平衡原理,构建了可描述质子交换膜电解槽物质传输以及能量转换的精细化仿真模型。在此基础上,建立了包含电化学储能、氢储能的电-氢耦合系统模型。提出了一种考虑电化学储能荷电状态与氢储能氢状态的双层协调控制策略。上层功率分配考虑了系统内电负荷和氢负荷需求变化,将电化学储能荷电状态、储氢罐氢状态作为重要约束因素,确定系统各设备的工作模式。底层控制根据设备的工作特性,采用PQ控制、VQ控制等方法实现功率追踪调整。通过多种不同运行场景的算例仿真验证了所提模型与控制方法的有效性。研究成果可为风光氢储系统控制策略优化提供支撑。

关键词: 可再生能源, 氢储能, 电化学储能, 荷电状态, 储氢状态, 协调控制

Abstract:

Energy storage is one of the important methods for mitigating the fluctuation of renewable energy. A refined simulation model is presented that can describe the material transport and energy conversion in a proton exchange membrane electrolyser (PEM). The model is constructed based on the component structure of the PEM, as well as the principles of electrochemistry and thermal equilibrium, taking into account the phenomenon of internal gas transport across the membrane. Based on this model, an electricity-hydrogen coupling system including electrochemical energy storage and hydrogen energy storage is established. A two-layer coordinated control strategy considering the charge state of electrochemical energy storage and the hydrogen state of hydrogen energy storage is proposed. The upper-layer power allocation considers the changes in electric and hydrogen load demands in the system, and uses the battery state of charge and hydrogen storage tank state of hydrogen as important constraints to determine the operating modes for each device in the system. The bottom layer control achieves power tracking adjustment by utilizing PQ control, VQ control, and other methods according to equipment operating characteristics. The effectiveness of this proposed model and control method is verified through simulations under several different operation scenarios. The research results can provide support for the optimization of control strategies for wind-photovoltaic-hydrogen storage systems.

Key words: renewable energy, hydrogen energy storage, electrochemical energy storage, state of charge, storage state of hydrogen, coordinated control