中国电力 ›› 2024, Vol. 57 ›› Issue (7): 203-213.DOI: 10.11930/j.issn.1004-9649.202309019
景巍巍1(), 王强2, 程好3, 王博1(
), 岳付昌1(
), 王沉4(
), 王文学1(
)
收稿日期:
2023-09-05
出版日期:
2024-07-28
发布日期:
2024-07-23
作者简介:
景巍巍(1981—),男,高级工程师,从事综合能源系统运行与优化、电力系统调度与运行控制研究,E-mail:jony_jing@163.com基金资助:
Weiwei JING1(), Qiang WANG2, Hao CHENG3, Bo WANG1(
), Fuchang YUE1(
), Chen WANG4(
), Wenxue WANG1(
)
Received:
2023-09-05
Online:
2024-07-28
Published:
2024-07-23
Supported by:
摘要:
综合能源系统稳态潮流计算是后续规划、运行等研究的基础。目前常采用的牛顿-拉夫逊法存在数值稳定性问题,且随着综合能源系统不确定因素增加,研究系统的区间潮流以实现综合能源系统的安全分析和评估变得越来越重要。首先,基于泰勒函数一阶展开和二阶展开,推导出热负荷流量和节点温度的解析表达式,该表达式实现了流量与温度的独立求解,无须解方程组即可得到系统稳态潮流。然后,分析流量和温度表达式的函数单调性,结合各热负荷值,确定了热负荷流量和热负荷节点温度的区间潮流解,所提方法在保证计算精度的同时,计算速度快且不存在数值稳定性问题。最后,通过算例分析验证了所提方法的有效性。
景巍巍, 王强, 程好, 王博, 岳付昌, 王沉, 王文学. 电热综合能源系统稳态与区间潮流计算快速解耦新方法[J]. 中国电力, 2024, 57(7): 203-213.
Weiwei JING, Qiang WANG, Hao CHENG, Bo WANG, Fuchang YUE, Chen WANG, Wenxue WANG. New Rapid Decoupling Methods for Calculating Steady-State and Interval Power Flow of Integrated Electricity-Heat Energy Systems[J]. Electric Power, 2024, 57(7): 203-213.
管 道 编 号 | 管道流量/(kg·s–1) | 偏差/% | 流量均方根误差/ (kg·s–1) | 流量平均绝对误差/ (kg·s–1) | ||||||||||||||
模型1 | 模型2 | 模型3 | 模型 1、2 | 模型 1、3 | 模型 1、2 | 模型 1、3 | 模型 1、2 | 模型 1、3 | ||||||||||
7 | 1.8007 | 1.8003 | 1.8022 | 0.0222 | 0.0833 | 2.06× 10–4 | 39.3× 10–4 | 1.58× 10–4 | 10.8× 10–4 | |||||||||
8 | 1.7440 | 1.7441 | 1.7444 | 0.0057 | 0.0229 | |||||||||||||
10 | 1.7668 | 1.7669 | 1.7676 | 0.0057 | 0.0453 | |||||||||||||
11 | 1.7642 | 1.7643 | 1.7650 | 0.0057 | 0.0453 | |||||||||||||
12 | 1.7561 | 1.7563 | 1.7568 | 0.0114 | 0.0399 | |||||||||||||
14 | 1.7820 | 1.7820 | 1.7832 | 0.0000 | 0.0673 | |||||||||||||
15 | 1.7775 | 1.7775 | 1.7786 | 0.0000 | 0.0619 | |||||||||||||
16 | 1.7645 | 1.7647 | 1.7655 | 0.0113 | 0.0567 | |||||||||||||
19 | 1.7950 | 1.7948 | 1.7965 | 0.0111 | 0.0836 | |||||||||||||
20 | 1.7739 | 1.7741 | 1.7751 | 0.0113 | 0.0676 | |||||||||||||
21 | 1.8022 | 1.8018 | 1.8037 | 0.0222 | 0.0832 | |||||||||||||
22 | 1.7823 | 1.7823 | 1.7836 | 0.0000 | 0.0729 |
表 1 模型1~3的流量值
Table 1 The flow rate of models 1~3
管 道 编 号 | 管道流量/(kg·s–1) | 偏差/% | 流量均方根误差/ (kg·s–1) | 流量平均绝对误差/ (kg·s–1) | ||||||||||||||
模型1 | 模型2 | 模型3 | 模型 1、2 | 模型 1、3 | 模型 1、2 | 模型 1、3 | 模型 1、2 | 模型 1、3 | ||||||||||
7 | 1.8007 | 1.8003 | 1.8022 | 0.0222 | 0.0833 | 2.06× 10–4 | 39.3× 10–4 | 1.58× 10–4 | 10.8× 10–4 | |||||||||
8 | 1.7440 | 1.7441 | 1.7444 | 0.0057 | 0.0229 | |||||||||||||
10 | 1.7668 | 1.7669 | 1.7676 | 0.0057 | 0.0453 | |||||||||||||
11 | 1.7642 | 1.7643 | 1.7650 | 0.0057 | 0.0453 | |||||||||||||
12 | 1.7561 | 1.7563 | 1.7568 | 0.0114 | 0.0399 | |||||||||||||
14 | 1.7820 | 1.7820 | 1.7832 | 0.0000 | 0.0673 | |||||||||||||
15 | 1.7775 | 1.7775 | 1.7786 | 0.0000 | 0.0619 | |||||||||||||
16 | 1.7645 | 1.7647 | 1.7655 | 0.0113 | 0.0567 | |||||||||||||
19 | 1.7950 | 1.7948 | 1.7965 | 0.0111 | 0.0836 | |||||||||||||
20 | 1.7739 | 1.7741 | 1.7751 | 0.0113 | 0.0676 | |||||||||||||
21 | 1.8022 | 1.8018 | 1.8037 | 0.0222 | 0.0832 | |||||||||||||
22 | 1.7823 | 1.7823 | 1.7836 | 0.0000 | 0.0729 |
节点 编号 | 供水温度/℃ | 偏差/% | ||||||||
模型1 | 模型2 | 模型3 | 模型1、2 | 模型1、3 | ||||||
7 | 96.3975 | 96.4120 | 96.3414 | 0.0150 | 0.0582 | |||||
8 | 98.5540 | 98.5512 | 98.5396 | 0.0028 | 0.0146 | |||||
10 | 97.6696 | 97.6684 | 97.6385 | 0.0012 | 0.0318 | |||||
11 | 97.7687 | 97.7661 | 97.7386 | 0.0027 | 0.0308 | |||||
12 | 98.0831 | 98.0765 | 98.0561 | 0.0067 | 0.0275 | |||||
14 | 97.0921 | 97.0941 | 97.0477 | 0.0021 | 0.0457 | |||||
15 | 97.2647 | 97.2628 | 97.2216 | 0.0020 | 0.0443 | |||||
16 | 97.7604 | 97.7499 | 97.7220 | 0.0107 | 0.0393 | |||||
19 | 96.6070 | 96.6143 | 96.5515 | 0.0076 | 0.0574 | |||||
20 | 97.3979 | 97.3900 | 97.3525 | 0.0081 | 0.0466 | |||||
21 | 96.3417 | 96.3576 | 96.2849 | 0.0165 | 0.0590 | |||||
22 | 97.0831 | 97.0801 | 97.0333 | 0.0031 | 0.0513 |
表 2 模型1~3的供水温度
Table 2 The water supply temperature of models 1~3
节点 编号 | 供水温度/℃ | 偏差/% | ||||||||
模型1 | 模型2 | 模型3 | 模型1、2 | 模型1、3 | ||||||
7 | 96.3975 | 96.4120 | 96.3414 | 0.0150 | 0.0582 | |||||
8 | 98.5540 | 98.5512 | 98.5396 | 0.0028 | 0.0146 | |||||
10 | 97.6696 | 97.6684 | 97.6385 | 0.0012 | 0.0318 | |||||
11 | 97.7687 | 97.7661 | 97.7386 | 0.0027 | 0.0308 | |||||
12 | 98.0831 | 98.0765 | 98.0561 | 0.0067 | 0.0275 | |||||
14 | 97.0921 | 97.0941 | 97.0477 | 0.0021 | 0.0457 | |||||
15 | 97.2647 | 97.2628 | 97.2216 | 0.0020 | 0.0443 | |||||
16 | 97.7604 | 97.7499 | 97.7220 | 0.0107 | 0.0393 | |||||
19 | 96.6070 | 96.6143 | 96.5515 | 0.0076 | 0.0574 | |||||
20 | 97.3979 | 97.3900 | 97.3525 | 0.0081 | 0.0466 | |||||
21 | 96.3417 | 96.3576 | 96.2849 | 0.0165 | 0.0590 | |||||
22 | 97.0831 | 97.0801 | 97.0333 | 0.0031 | 0.0513 |
管道 编号 | 流量上限/(kg·s–1) | 偏差/% | ||||||||
模型1 | 模型2 | 模型3 | 模型1、2 | 模型1、3 | ||||||
7 | 1.9765 | 1.9782 | 1.9802 | 0.0860 | 0.1872 | |||||
8 | 1.9154 | 1.9157 | 1.9160 | 0.0157 | 0.0313 | |||||
10 | 1.9403 | 1.9410 | 1.9418 | 0.0361 | 0.0773 | |||||
11 | 1.9377 | 1.9384 | 1.9391 | 0.0361 | 0.0723 | |||||
12 | 1.9288 | 1.9298 | 1.9303 | 0.0518 | 0.0778 | |||||
14 | 1.9568 | 1.9588 | 1.9601 | 0.1022 | 0.1686 | |||||
15 | 1.9525 | 1.9543 | 1.9555 | 0.0922 | 0.1536 | |||||
16 | 1.9393 | 1.9409 | 1.9416 | 0.0825 | 0.1186 | |||||
19 | 1.9719 | 1.9743 | 1.9762 | 0.1217 | 0.2181 | |||||
20 | 1.9496 | 1.9516 | 1.9527 | 0.1026 | 0.1590 | |||||
21 | 1.9793 | 1.9812 | 1.9834 | 0.0960 | 0.2071 | |||||
22 | 1.9579 | 1.9602 | 1.9616 | 0.1175 | 0.1890 |
表 3 管道流量上限及偏差
Table 3 The upper limit and deviation of pipe flow rate
管道 编号 | 流量上限/(kg·s–1) | 偏差/% | ||||||||
模型1 | 模型2 | 模型3 | 模型1、2 | 模型1、3 | ||||||
7 | 1.9765 | 1.9782 | 1.9802 | 0.0860 | 0.1872 | |||||
8 | 1.9154 | 1.9157 | 1.9160 | 0.0157 | 0.0313 | |||||
10 | 1.9403 | 1.9410 | 1.9418 | 0.0361 | 0.0773 | |||||
11 | 1.9377 | 1.9384 | 1.9391 | 0.0361 | 0.0723 | |||||
12 | 1.9288 | 1.9298 | 1.9303 | 0.0518 | 0.0778 | |||||
14 | 1.9568 | 1.9588 | 1.9601 | 0.1022 | 0.1686 | |||||
15 | 1.9525 | 1.9543 | 1.9555 | 0.0922 | 0.1536 | |||||
16 | 1.9393 | 1.9409 | 1.9416 | 0.0825 | 0.1186 | |||||
19 | 1.9719 | 1.9743 | 1.9762 | 0.1217 | 0.2181 | |||||
20 | 1.9496 | 1.9516 | 1.9527 | 0.1026 | 0.1590 | |||||
21 | 1.9793 | 1.9812 | 1.9834 | 0.0960 | 0.2071 | |||||
22 | 1.9579 | 1.9602 | 1.9616 | 0.1175 | 0.1890 |
管道 编号 | 流量下限/(kg·s–1) | 偏差/% | ||||||||
模型1 | 模型2 | 模型3 | 模型1、2 | 模型1、3 | ||||||
7 | 1.6247 | 1.6231 | 1.6249 | 0.0985 | 0.0123 | |||||
8 | 1.5728 | 1.5726 | 1.5729 | 0.0127 | 0.0064 | |||||
10 | 1.5936 | 1.5930 | 1.5938 | 0.0377 | 0.0126 | |||||
11 | 1.5911 | 1.5904 | 1.5912 | 0.0440 | 0.0063 | |||||
12 | 1.5839 | 1.5831 | 1.5837 | 0.0505 | 0.0126 | |||||
14 | 1.6070 | 1.6057 | 1.6069 | 0.0809 | 0.0062 | |||||
15 | 1.6022 | 1.6013 | 1.6023 | 0.0562 | 0.0062 | |||||
16 | 1.5904 | 1.5893 | 1.5900 | 0.0692 | 0.0252 | |||||
19 | 1.6174 | 1.6161 | 1.6177 | 0.0804 | 0.0185 | |||||
20 | 1.5988 | 1.5975 | 1.5985 | 0.0813 | 0.0188 | |||||
21 | 1.6247 | 1.6231 | 1.6249 | 0.0985 | 0.0123 | |||||
22 | 1.6067 | 1.6052 | 1.6063 | 0.0934 | 0.0249 |
表 4 管道流量下限及偏差
Table 4 The lower limit and deviation of pipe flow rate
管道 编号 | 流量下限/(kg·s–1) | 偏差/% | ||||||||
模型1 | 模型2 | 模型3 | 模型1、2 | 模型1、3 | ||||||
7 | 1.6247 | 1.6231 | 1.6249 | 0.0985 | 0.0123 | |||||
8 | 1.5728 | 1.5726 | 1.5729 | 0.0127 | 0.0064 | |||||
10 | 1.5936 | 1.5930 | 1.5938 | 0.0377 | 0.0126 | |||||
11 | 1.5911 | 1.5904 | 1.5912 | 0.0440 | 0.0063 | |||||
12 | 1.5839 | 1.5831 | 1.5837 | 0.0505 | 0.0126 | |||||
14 | 1.6070 | 1.6057 | 1.6069 | 0.0809 | 0.0062 | |||||
15 | 1.6022 | 1.6013 | 1.6023 | 0.0562 | 0.0062 | |||||
16 | 1.5904 | 1.5893 | 1.5900 | 0.0692 | 0.0252 | |||||
19 | 1.6174 | 1.6161 | 1.6177 | 0.0804 | 0.0185 | |||||
20 | 1.5988 | 1.5975 | 1.5985 | 0.0813 | 0.0188 | |||||
21 | 1.6247 | 1.6231 | 1.6249 | 0.0985 | 0.0123 | |||||
22 | 1.6067 | 1.6052 | 1.6063 | 0.0934 | 0.0249 |
管道 编号 | 温度上限/℃ | 偏差/% | ||||||||
模型1 | 模型2 | 模型3 | 模型1、2 | 模型1、3 | ||||||
7 | 96.6707 | 96.7173 | 96.6581 | 0.0482 | 0.0130 | |||||
8 | 98.6761 | 98.6795 | 98.6698 | 0.0034 | 0.0064 | |||||
10 | 97.8573 | 97.8715 | 97.8466 | 0.0145 | 0.0109 | |||||
11 | 97.9465 | 97.9611 | 97.9381 | 0.0149 | 0.0086 | |||||
12 | 98.2316 | 98.2453 | 98.2283 | 0.0139 | 0.0034 | |||||
14 | 97.3169 | 97.3446 | 97.3058 | 0.0285 | 0.0114 | |||||
15 | 97.4713 | 97.4994 | 97.4650 | 0.0288 | 0.0065 | |||||
16 | 97.9233 | 97.9462 | 97.9229 | 0.0234 | 0.0004 | |||||
19 | 96.8598 | 96.9035 | 96.8509 | 0.0451 | 0.0092 | |||||
20 | 97.5855 | 97.6162 | 97.5849 | 0.0315 | 0.0006 | |||||
21 | 96.6174 | 96.6672 | 96.6063 | 0.0515 | 0.0115 | |||||
22 | 97.3014 | 97.3317 | 97.2925 | 0.0311 | 0.0091 |
表 5 节点温度上限及偏差
Table 5 The upper limit and deviation of node temperature
管道 编号 | 温度上限/℃ | 偏差/% | ||||||||
模型1 | 模型2 | 模型3 | 模型1、2 | 模型1、3 | ||||||
7 | 96.6707 | 96.7173 | 96.6581 | 0.0482 | 0.0130 | |||||
8 | 98.6761 | 98.6795 | 98.6698 | 0.0034 | 0.0064 | |||||
10 | 97.8573 | 97.8715 | 97.8466 | 0.0145 | 0.0109 | |||||
11 | 97.9465 | 97.9611 | 97.9381 | 0.0149 | 0.0086 | |||||
12 | 98.2316 | 98.2453 | 98.2283 | 0.0139 | 0.0034 | |||||
14 | 97.3169 | 97.3446 | 97.3058 | 0.0285 | 0.0114 | |||||
15 | 97.4713 | 97.4994 | 97.4650 | 0.0288 | 0.0065 | |||||
16 | 97.9233 | 97.9462 | 97.9229 | 0.0234 | 0.0004 | |||||
19 | 96.8598 | 96.9035 | 96.8509 | 0.0451 | 0.0092 | |||||
20 | 97.5855 | 97.6162 | 97.5849 | 0.0315 | 0.0006 | |||||
21 | 96.6174 | 96.6672 | 96.6063 | 0.0515 | 0.0115 | |||||
22 | 97.3014 | 97.3317 | 97.2925 | 0.0311 | 0.0091 |
节点 编号 | 温度下限/℃ | 偏差/% | ||||||||
模型1 | 模型2 | 模型3 | 模型1、2 | 模型1、3 | ||||||
7 | 96.0680 | 96.0440 | 95.9584 | 0.0250 | 0.1141 | |||||
8 | 98.4075 | 98.3953 | 98.3811 | 0.0124 | 0.0268 | |||||
10 | 97.4450 | 97.4225 | 97.3859 | 0.0231 | 0.0606 | |||||
11 | 97.5541 | 97.5299 | 97.4963 | 0.0248 | 0.0592 | |||||
12 | 97.9060 | 97.8717 | 97.8467 | 0.0350 | 0.0606 | |||||
14 | 96.8342 | 96.7915 | 96.7350 | 0.0441 | 0.1024 | |||||
15 | 97.0186 | 96.9766 | 96.9264 | 0.0433 | 0.0950 | |||||
16 | 97.5730 | 97.5121 | 97.4780 | 0.0624 | 0.0974 | |||||
19 | 96.3094 | 96.2655 | 96.1892 | 0.0456 | 0.1248 | |||||
20 | 97.1731 | 97.1164 | 97.0707 | 0.0583 | 0.1054 | |||||
21 | 96.0145 | 95.9845 | 95.8963 | 0.0312 | 0.1231 | |||||
22 | 96.8205 | 96.7761 | 96.7191 | 0.0459 | 0.1047 |
表 6 节点温度下限及偏差
Table 6 The lower limit and deviation of node temperature
节点 编号 | 温度下限/℃ | 偏差/% | ||||||||
模型1 | 模型2 | 模型3 | 模型1、2 | 模型1、3 | ||||||
7 | 96.0680 | 96.0440 | 95.9584 | 0.0250 | 0.1141 | |||||
8 | 98.4075 | 98.3953 | 98.3811 | 0.0124 | 0.0268 | |||||
10 | 97.4450 | 97.4225 | 97.3859 | 0.0231 | 0.0606 | |||||
11 | 97.5541 | 97.5299 | 97.4963 | 0.0248 | 0.0592 | |||||
12 | 97.9060 | 97.8717 | 97.8467 | 0.0350 | 0.0606 | |||||
14 | 96.8342 | 96.7915 | 96.7350 | 0.0441 | 0.1024 | |||||
15 | 97.0186 | 96.9766 | 96.9264 | 0.0433 | 0.0950 | |||||
16 | 97.5730 | 97.5121 | 97.4780 | 0.0624 | 0.0974 | |||||
19 | 96.3094 | 96.2655 | 96.1892 | 0.0456 | 0.1248 | |||||
20 | 97.1731 | 97.1164 | 97.0707 | 0.0583 | 0.1054 | |||||
21 | 96.0145 | 95.9845 | 95.8963 | 0.0312 | 0.1231 | |||||
22 | 96.8205 | 96.7761 | 96.7191 | 0.0459 | 0.1047 |
1 |
SHABANPOUR-HAGHIGHI A, SEIFI A R. An integrated steady-state operation assessment of electrical, natural gas, and district heating networks[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3636- 3647.
DOI |
2 |
MASSRUR H R, NIKNAM T, AGHAEI J, et al. Fast decomposed energy flow in large-scale integrated electricity-gas-heat energy systems[J]. IEEE Transactions on Sustainable Energy, 2018, 9 (4): 1565- 1577.
DOI |
3 | MAGDY G, MOHAMED E A, SHABIB G, et al. Microgrid dynamic security considering high penetration of renewable energy[J]. Protection and Control of Modern Power Systems, 2018, 3 (3): 1- 11. |
4 | 王伟亮, 王丹, 贾宏杰, 等. 能源互联网背景下的典型区域综合能源系统稳态分析研究综述[J]. 中国电机工程学报, 2016, 36 (12): 3292- 3305. |
WANG Weiliang, WANG Dan, JIA Hongjie, et al. Review of steady-state analysis of typical regional integrated energy system under the background of energy Internet[J]. Proceedings of the CSEE, 2016, 36 (12): 3292- 3305. | |
5 | LIU X Z. Combined analysis of electricity and heat networks[D]. Cardiff, Wales, UK: Cardiff University, 2013. |
6 |
LIU X Z, WU J Z, JENKINS N, et al. Combined analysis of electricity and heat networks[J]. Applied Energy, 2016, 162, 1238- 1250.
DOI |
7 |
刘述欣, 戴赛, 胡林献, 等. 计及回水管网热损失的电热联合系统潮流模型及算法[J]. 电力系统自动化, 2018, 42 (4): 77- 81.
DOI |
LIU Shuxin, DAI Sai, HU Linxian, et al. Power flow model and algorithm of combined power and heat system considering heat loss in return pipe network[J]. Automation of Electric Power Systems, 2018, 42 (4): 77- 81.
DOI |
|
8 | 顾伟, 陆帅, 王珺, 等. 多区域综合能源系统热网建模及系统运行优化[J]. 中国电机工程学报, 2017, 37 (5): 1305- 1316. |
GU Wei, LU Shuai, WANG Jun, et al. Modeling of the heating network for multi-district integrated energy system and its operation optimization[J]. Proceedings of the CSEE, 2017, 37 (5): 1305- 1316. | |
9 | 王英瑞, 曾博, 郭经, 等. 电–热–气综合能源系统多能流计算方法[J]. 电网技术, 2016, 40 (10): 2942- 2951. |
WANG Yingrui, ZENG Bo, GUO Jing, et al. Multi-energy flow calculation method for integrated energy system containing electricity, heat and gas[J]. Power System Technology, 2016, 40 (10): 2942- 2951. | |
10 | 徐宪东, 贾宏杰, 靳小龙, 等. 区域综合能源系统电/气/热混合潮流算法研究[J]. 中国电机工程学报, 2015, 35 (14): 3634- 3642. |
XU Xiandong, JIA Hongjie, JIN Xiaolong, et al. Study on hybrid heat-gas-power flow algorithm for integrated community energy system[J]. Proceedings of the CSEE, 2015, 35 (14): 3634- 3642. | |
11 |
CHEN Y B, ZHAO J Y, MA J. Fast decoupled multi-energy flow calculation for integrated energy system[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8 (5): 951- 960.
DOI |
12 | 陈彬彬, 孙宏斌, 尹冠雄, 等. 综合能源系统分析的统一能路理论(二): 水路与热路[J]. 中国电机工程学报, 2020, 40 (7): 2133- 2142, 2393. |
CHEN Binbin, SUN Hongbin, YIN Guanxiong, et al. Energy circuit theory of integrated energy system analysis(II): hydraulic circuit and thermal circuit[J]. Proceedings of the CSEE, 2020, 40 (7): 2133- 2142, 2393. | |
13 | 陈彬彬, 孙宏斌, 吴文传, 等. 综合能源系统分析的统一能路理论(三): 稳态与动态潮流计算[J]. 中国电机工程学报, 2020, 40 (15): 4820- 4831. |
CHEN Binbin, SUN Hongbin, WU Wenchuan, et al. Energy circuit theory of integrated energy system analysis(Ⅲ): steady and dynamic energy flow calculation[J]. Proceedings of the CSEE, 2020, 40 (15): 4820- 4831. | |
14 | 胡枭, 尚策, 程浩忠, 等. 综合能源系统能流计算方法述评与展望[J]. 电力系统自动化, 2020, 44 (18): 179- 191. |
HU Xiao, SHANG Ce, CHENG Haozhong, et al. Review and prospect of calculation method for energy flow in integrated energy system[J]. Automation of Electric Power Systems, 2020, 44 (18): 179- 191. | |
15 | 卢炳文, 魏震波, 魏平桉, 等. 考虑多重区间不确定性的用户侧综合能源系统双层优化配置[J]. 中国电力, 2022, 55 (3): 193- 202. |
LU Bingwen, WEI Zhenbo, WEI Pingan, et al. Two-level optimal configuration of user-side integrated energy system considering interval uncertainties[J]. Electric Power, 2022, 55 (3): 193- 202. | |
16 | 郭祚刚, 徐敏, 于浩, 等. 考虑多重不确定性的园区综合能源系统区间优化调度[J]. 中国电力, 2022, 55 (11): 121- 128, 141. |
GUO Zuogang, XU Min, YU Hao, et al. Interval optimal dispatching of community integrated energy system considering multiple uncertainties[J]. Electric Power, 2022, 55 (11): 121- 128, 141. | |
17 | 伍惠铖, 王淳, 刘宽, 等. 电-热综合能源系统能流的区间计算算法[J]. 电网技术, 2019, 43 (1): 91- 99. |
WU Huicheng, WANG Chun, LIU Kuan, et al. An interval energy flow calculation method for integrated electro-thermal energy system[J]. Power System Technology, 2019, 43 (1): 91- 99. | |
18 | 王文学, 胡伟, 孙国强, 等. 电-热互联综合能源系统区间潮流计算方法[J]. 电网技术, 2019, 43 (1): 83- 95. |
WANG Wenxue, HU Wei, SUN Guoqiang, et al. Interval energy flow calculation method of integrated electro-thermal system[J]. Power System Technology, 2019, 43 (1): 83- 95. | |
19 | 张涛, 刘伉, 陶然, 等. 计及热媒流率和热损耗不确定性的综合能源系统优化调度[J]. 中国电力, 2023, 56 (4): 146- 155. |
ZHANG Tao, LIU Kang, TAO Ran, et al. Optimal scheduling of integrated energy system considering uncertainty of heat medium flow rate and heating network loss[J]. Electric Power, 2023, 56 (4): 146- 155. | |
20 | 陈胜, 卫志农, 孙国强, 等. 电-气混联综合能源系统概率能量流分析[J]. 中国电机工程学报, 2015, 35 (24): 6331- 6340. |
CHEN Sheng, WEI Zhinong, SUN Guoqiang, et al. Probabilistic energy flow analysis in integrated electricity and natural-gas energy systems[J]. Proceedings of the CSEE, 2015, 35 (24): 6331- 6340. | |
21 | 韩佶, 苗世洪, 李超, 等. 计及相关性的电-气-热综合能源系统概率最优能量流[J]. 电工技术学报, 2019, 34 (5): 1055- 1067. |
HAN Ji, MIAO Shihong, LI Chao, et al. Probabilistic optimal energy flow of electricity-gas-heat integrated energy system considering correlation[J]. Transactions of China Electrotechnical Society, 2019, 34 (5): 1055- 1067. | |
22 | 李红, 王文学, 伏祥运, 等. 基于解析法的电-热互联综合能源系统概率潮流计算[J]. 电力工程技术, 2021, 40 (5): 151- 157. |
LI Hong, WANG Wenxue, FU Xiangyun, et al. Probability power flow calculation for electric-thermal interconnected integrated energy system based on analytical method[J]. Electric Power Engineering Technology, 2021, 40 (5): 151- 157. | |
23 | 孙国强, 王文学, 吴奕, 等. 辐射型电–热互联综合能源系统快速潮流计算方法[J]. 中国电机工程学报, 2020, 40 (13): 4131- 4142. |
SUN Guoqiang, WANG Wenxue, WU Yi, et al. Fast power flow calculation method for radiant electric-thermal interconnected integrated energy system[J]. Proceedings of the CSEE, 2020, 40 (13): 4131- 4142. | |
24 | 张敏, 王金浩, 常潇, 等. 考虑可再生能源不确定性的热-电耦合微能源系统多目标鲁棒规划方法[J]. 中国电力, 2021, 54 (4): 119- 129, 140. |
ZHANG Min, WANG Jinhao, CHANG Xiao, et al. A multi-objective robust planning method for thermal-electrical coupling micro-energy system considering the uncertainty of renewable energy[J]. Electric Power, 2021, 54 (4): 119- 129, 140. | |
25 | 罗金满, 赵善龙, 封祐钧, 等. 考虑综合需求响应不确定性的电-气综合能源系统优化运行[J]. 中国电力, 2020, 53 (12): 119- 126. |
LUO Jinman, ZHAO Shanlong, FENG Youjun, et al. Optimal operation of integrated electricity-gas system considering uncertainty of integrated demand response[J]. Electric Power, 2020, 53 (12): 119- 126. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||