中国电力 ›› 2024, Vol. 57 ›› Issue (6): 37-44.DOI: 10.11930/j.issn.1004-9649.202312106

• 储能用锂离子电池本体安全关键技术 • 上一篇    下一篇

基于LWOA-LSTM的大容量锂电池SOC估计

马宏忠(), 宣文婧(), 朱沐雨, 陈悦林   

  1. 河海大学 电气与动力工程学院,江苏 南京 210024
  • 收稿日期:2023-12-29 出版日期:2024-06-28 发布日期:2024-06-25
  • 作者简介:马宏忠(1963—),男,博士,教授,从事电力设备状态监测和故障诊断技术研究,E-mail:904366108@qq.com
    宣文婧(2000—),女,通信作者,硕士研究生,从事电池状态估计研究,E-mail:xuanwj0601@163.com
  • 基金资助:
    国家自然科学基金资助项目(双馈异步发电机内部故障的振动(学)机理分析与机电(声)融合诊断研究,51577050);国家电网有限公司科技项目(不同网储互动模式下储能电池安全性能研究,J2022158)。

SOC Estimation of Large Capacity Lithium Batteries Based on LWOA-LSTM

Hongzhong MA(), Wenjing XUAN(), Muyu ZHU, Yuelin CHEN   

  1. College of Electrical and Power Engineering, Hohai University, Nanjing 210024, China
  • Received:2023-12-29 Online:2024-06-28 Published:2024-06-25
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Vibration Mechanism Analysis and Electromechanical (Acoustic) Fusion Diagnosis Research on Internal Faults of Doubly Fed Asynchronous Generators, No.51577050) and Science & Technology Project of SGCC (Research on Safety Performance of Energy Storage Batteries under Different Network Storage Interaction Modes, No.J2022158).

摘要:

准确预测锂电池荷电状态(SOC)对电池安全运行至关重要,分析在电网不同模式下的SOC更是锂电池全面推广的基础。提出一种基于莱维飞行的鲸鱼优化算法(LWOA)优化长短时记忆神经网络(LSTM),对调频模式下的大容量锂离子电池SOC进行估计。首先,分析LSTM神经网络和LWOA算法,构建LWOA-LSTM模型,进行参数优化;然后,选取调频模式下大容量锂离子电池组实验数据,对数据进行预处理和模型训练;最后,实现调频模式下锂电池的SOC估计。试验结果表明:所构建模型能准确预测锂电池SOC,较WOA-LSTM模型,评估指标RMSE和MAE分别降低了25.55%、28.71%,R2上升了0.76%。

关键词: 荷电状态, 锂电池, 鲸鱼优化算法, 长短时记忆网络, 调频模式

Abstract:

Accurate prediction of the state of charge (SOC) of lithium batteries is crucial for their safe operation, and analyzing the SOC in different power grid modes is the basis for the comprehensive promotion of lithium batteries. This paper proposes a whale optimization algorithm based on Levy flight (LWOA) to optimize long short-term memory neural network (LSTM) for estimating the SOC of large capacity lithium-ion batteries in frequency modulation mode. Firstly, the LSTM neural network and LWOA algorithm are analyzed, and the LWOA-LSTM model is constructed to optimize the parameters. Then, the experimental data of the large capacity lithium-ion battery pack in frequency modulation mode are selected for data preprocessing and model training. Finally, SOC estimation of lithium batteries in frequency modulation mode is achieved. The experimental results show that the constructed model can accurately predict the SOC of lithium batteries. Compared with the WOA-LSTM model, the evaluation indicators RMSE and MAE are reduced by 25.55% and 28.71%, respectively, while R2 increases by 0.76%.

Key words: state of charge, lithium batteries, whale optimization algorithm, LSTM, frequency modulation mode