中国电力 ›› 2024, Vol. 57 ›› Issue (6): 37-44.DOI: 10.11930/j.issn.1004-9649.202312106
收稿日期:
2023-12-29
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
马宏忠(1963—),男,博士,教授,从事电力设备状态监测和故障诊断技术研究,E-mail:904366108@qq.com基金资助:
Hongzhong MA(), Wenjing XUAN(
), Muyu ZHU, Yuelin CHEN
Received:
2023-12-29
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
准确预测锂电池荷电状态(SOC)对电池安全运行至关重要,分析在电网不同模式下的SOC更是锂电池全面推广的基础。提出一种基于莱维飞行的鲸鱼优化算法(LWOA)优化长短时记忆神经网络(LSTM),对调频模式下的大容量锂离子电池SOC进行估计。首先,分析LSTM神经网络和LWOA算法,构建LWOA-LSTM模型,进行参数优化;然后,选取调频模式下大容量锂离子电池组实验数据,对数据进行预处理和模型训练;最后,实现调频模式下锂电池的SOC估计。试验结果表明:所构建模型能准确预测锂电池SOC,较WOA-LSTM模型,评估指标RMSE和MAE分别降低了25.55%、28.71%,R2上升了0.76%。
马宏忠, 宣文婧, 朱沐雨, 陈悦林. 基于LWOA-LSTM的大容量锂电池SOC估计[J]. 中国电力, 2024, 57(6): 37-44.
Hongzhong MA, Wenjing XUAN, Muyu ZHU, Yuelin CHEN. SOC Estimation of Large Capacity Lithium Batteries Based on LWOA-LSTM[J]. Electric Power, 2024, 57(6): 37-44.
网络模型 | 第1层隐 藏层层数 | 第2层隐 藏层层数 | 学习率 | 批量大小 | ||||
WOA-LSTM | 94 | 56 | 0.0084 | 57 | ||||
LWOA-LSTM | 50 | 85 | 0.0042 | 28 |
表 1 WOA和LWOA对LSTM超参数优化结果
Table 1 WOA and LWOA optimization results for LSTM hyperparameters
网络模型 | 第1层隐 藏层层数 | 第2层隐 藏层层数 | 学习率 | 批量大小 | ||||
WOA-LSTM | 94 | 56 | 0.0084 | 57 | ||||
LWOA-LSTM | 50 | 85 | 0.0042 | 28 |
模型 | ERMS | EMA | EMAP/% | R2 | ||||
LSTM | 0.0192880 | 0.0106760 | 3.5351 | 0.98412 | ||||
WOA-LSTM | 0.0127524 | 0.0071967 | 1.2462 | 0.98962 | ||||
LWOA-LSTM | 0.0094943 | 0.0051306 | 0.3894 | 0.99714 |
表 2 各算法评价指标
Table 2 Evaluation indicators of algorithms
模型 | ERMS | EMA | EMAP/% | R2 | ||||
LSTM | 0.0192880 | 0.0106760 | 3.5351 | 0.98412 | ||||
WOA-LSTM | 0.0127524 | 0.0071967 | 1.2462 | 0.98962 | ||||
LWOA-LSTM | 0.0094943 | 0.0051306 | 0.3894 | 0.99714 |
1 |
ZHANG M, YANG D F, DU J X, et al. A review of SOH prediction of Li-ion batteries based on data-driven algorithms[J]. Energies, 2023, 16 (7): 3167.
DOI |
2 | 晋殿卫, 顾则宇, 张志宏. 锂电池健康度和剩余寿命预测算法研究[J]. 电力系统保护与控制, 2023, 51 (1): 122- 130. |
JIN Dianwei, GU Zeyu, ZHANG Zhihong. Lithium battery health degree and residual life prediction algorithm[J]. Power System Protection and Control, 2023, 51 (1): 122- 130. | |
3 | 李浩, 李浩, 杨扬, 等. 基于改进鲸鱼算法优化GRU的PEMFC老化预测[J/OL]. 中国电机工程学报: 1–14[2024-04-07].https://doi.org/10.13334/j.0258-8013.pcsee.230956. |
LI Hao, LI Hao, YANG Yang, et al. PEMFC aging prediction based on improved whale optimization algorithm optimized GRU[J/OL]. Proceedings of the CSEE: 1–14[2024-04-07].https://doi.org/10.13334/j.0258-8013.pcsee.230956. | |
4 | 赵斌, 呼如威, 蒋东方, 等. 高寒高海拔地区微网储能锂电池系统优化设计[J]. 中国电力, 2020, 53 (5): 128- 134. |
ZHAO Bin, HU Ruwei, JIANG Dongfang, et al. Optimized design of lithium battery system for microgrid energy storage in severely cold and high elevation regions[J]. Electric Power, 2020, 53 (5): 128- 134. | |
5 | 杨帆. 锂离子电池SOC估计与主动均衡控制策略研究[D]. 杭州: 浙江大学, 2023. |
YANG Fan. Research on SOC estimation and active equalization control strategy of lithium-ion battery[D]. Hangzhou: Zhejiang University, 2023. | |
6 | 翟苏巍, 李文云, 周成, 等. 基于改进概率神经网络的储能电池荷电状态估计[J]. 智慧电力, 2024, 52 (2): 94- 100. |
ZHAI Suwei, LI Wenyun, ZHOU Cheng, et al. State-of-charge estimation of energy storage batteries based on modified probabilistic neural networks[J]. Smart Grid, 2024, 52 (2): 94- 100. | |
7 | 刘巨, 任羽纶, 易柏年, 等. LSTM-EKF算法实现储能集装箱电芯SOC的优化估计[J]. 电力科学与技术学报, 2024, 39 (2): 198- 206. |
LIU Ju, REN Yulun, YI Bonian, et al. Optimal estimation of cell SOC in energy storage container with LSTM-EKF algorithm[J]. Journal of Electric Power Science and Technology, 2024, 39 (2): 198- 206. | |
8 | 廖柯伊. 基于锂离子电池简化电化学模型的自适应死区SOC估计算法[D]. 成都: 西南交通大学, 2021. |
LIAO Keyi. Adaptive dead zone SOC estimation algorithm based on simplified electrochemical model of lithium-ion batteries[D]. Chengdu: Southwest Jiaotong University, 2021. | |
9 | 孙国帅, 王靖岳, 武旭东, 等. 基于改进无迹卡尔曼滤波锂电池SOC估计[J]. 电工技术, 2023, (17): 31- 36, 43. |
SUN Guoshuai, WANG Jingyue, WU Xudong, et al. SOC estimation of lithium-ion battery based on improved untraced Kalman filtering[J]. Electric Engineering, 2023, (17): 31- 36, 43. | |
10 |
海涛, 范攀龙, 王钧. 基于联合EKF-UKF算法的锂电池SOC预估研究[J]. 电源技术, 2023, 47 (11): 1424- 1428.
DOI |
HAI Tao, FAN Panlong, WANG Jun. SOC estimation of lithium battery based on joint EKF-UKF algorithm[J]. Chinese Journal of Power Sources, 2023, 47 (11): 1424- 1428.
DOI |
|
11 | QAYS M O, BUSWIG Y, HOSSAIN M L, et al. Recent progress and future trends on the state of charge estimation methods to improve battery-storage efficiency: a review[J]. CSEE Journal of Power and Energy Systems, 2022, 8 (1): 105- 114. |
12 | 苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络的动力电池SOC估算方法[J]. 储能科学与技术, 2019, 8 (5): 868- 873. |
SU Zhenhao, LI Xiaojie, QIN Jin, et al. SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8 (5): 868- 873. | |
13 | 王帅, 马鸿雁, 窦嘉铭, 等. 基于UGOA-BP的锂电池SOC估算[J]. 储能科学与技术, 2022, 11 (1): 258- 264. |
WANG Shuai, MA Hongyan, DOU Jiaming, et al. Estimation of lithium-ion battery state of charge based on UGOA-BP[J]. Energy Storage Science and Technology, 2022, 11 (1): 258- 264. | |
14 | 张帅涛, 蒋品群, 宋树祥, 等. 基于注意力机制和CNN-LSTM融合模型的锂电池SOC预测[J/OL]. 电源学报: 1–15[2024-04-07]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220222.1322.005.html. |
ZHANG Shuaitao, JIANG Pinqun, SONG Shuxiang, et al. SOC prediction for lithium battery based on the fusion model of attention mechanism and CNN-LSTM[J/OL]. Journal of Power Supply, 2023, 1–15[2024-04-07]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220222.1322.005.html. | |
15 |
陈继斌, 李雯雯, 孙彦玺, 等. 基于卷积-双向长短期记忆网络的电池SOC预测[J]. 电源技术, 2022, 46 (5): 532- 535.
DOI |
CHEN Jibin, LI Wenwen, SUN Yanxi, et al. Battery SOC prediction based on convolution bidirectional long term and short term memory network[J]. Chinese Journal of Power Sources, 2022, 46 (5): 532- 535.
DOI |
|
16 | 许德刚, 王再庆, 郭奕欣, 等. 鲸鱼优化算法研究综述[J]. 计算机应用研究, 2023, 40 (2): 328- 336. |
XU Degang, WANG Zaiqing, GUO Yixin, et al. Review of whale optimization algorithm[J]. Application Research of Computers, 2023, 40 (2): 328- 336. | |
17 |
陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43 (8): 131- 137.
DOI |
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43 (8): 131- 137.
DOI |
|
18 | 邹红波, 柴延辉, 杨钦贺, 等. 基于混合ISSA-LSTM的锂离子电池剩余使用寿命预测[J]. 电力系统保护与控制, 2023, 51 (19): 21- 31. |
ZOU Hongbo, CHAI Yanhui, YANG Qinhe, et al. Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM[J]. Power System Protection and Control, 2023, 51 (19): 21- 31. | |
19 |
REN L, DONG J B, WANG X K, et al. A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (5): 3478- 3487.
DOI |
20 | 朱元富, 贺文武, 李建兴, 等. 基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J]. 储能科学与技术, 2021, 10 (3): 1163- 1176. |
ZHU Yuanfu, HE Wenwu, LI Jianxing, et al. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU[J]. Energy Storage Science and Technology, 2021, 10 (3): 1163- 1176. | |
21 | 孙玉树, 李宏川, 王波, 等. 电池储能系统SOC神经网络融合估计方法[J]. 湖南大学学报(自然科学版), 2023, 50 (10): 31- 40. |
SUN Yushu, LI Hongchuan, WANG Bo, et al. SOC neural network fusion estimation method for battery energy storage system[J]. Journal of Hunan University (Natural Sciences), 2023, 50 (10): 31- 40. | |
22 | 黄晓凡, 李佳瑞, 秦玉文, 等. 基于多尺度CNN和残差LSTM网络的储能电站SOC估计[J/OL]. 电源学报: 1–12[2024-04-07]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231023.1653.014.html. |
HUANG Xiaofan, LI Jiarui, QIN Yuwen, et al. A multi-scale CNN and residual LSTM network method for estimating the state of charge in energy storage system[J]. Journal of Power Supply, 1–12[2024-04-07]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231023.1653.014.html. |
[1] | 么钟然, 孙丽颖. 考虑线路阻抗的分布式储能SOC均衡控制策略[J]. 中国电力, 2024, 57(9): 238-246. |
[2] | 邵冲, 胡荣义, 余姣, 王明典. 考虑荷电与储氢状态的风光氢储系统动态控制仿真模型[J]. 中国电力, 2024, 57(7): 109-124. |
[3] | 朱沐雨, 马宏忠, 郭鹏宇, 宣文婧. 典型调峰/调频工况下储能电池组荷电状态估计[J]. 中国电力, 2024, 57(6): 18-26. |
[4] | 曹宇, 胡鹏飞, 蔡婉琪, 王曦, 江道灼, 梁一桥. 基于MMC的超级电容与蓄电池混合储能系统及其混合同步控制策略[J]. 中国电力, 2024, 57(6): 78-89. |
[5] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王文烨, 张帅, 赵凤展. 计及激励型需求响应的低压配电网混合储能优化配置[J]. 中国电力, 2024, 57(6): 90-101. |
[6] | 薛飞, 李宏强, 李旭涛, 徐恒山. 基于LSTM神经网络的双馈风机控制参数辨识方法[J]. 中国电力, 2023, 56(6): 31-39. |
[7] | 张宏杰, 陈贵凤, 闫宏伟, 杨晓龙, 侯天仁, 张伟. 基于SMOTE与Bayes优化的LSTM网络变压器故障诊断[J]. 中国电力, 2023, 56(10): 164-170. |
[8] | 王波, 张占营, 张霄, 席晟哲, 邓锦, 米阳. 直流微电网分布式储能系统精确电流分配策略[J]. 中国电力, 2022, 55(8): 96-103,112. |
[9] | 陈正雄, 帕孜来·马合木提, 沈玮. 基于改进支持向量回归的IGBT老化预测[J]. 中国电力, 2022, 55(7): 1-10. |
[10] | 张嘉诚, 夏向阳, 邓子豪, 陈贵全. 储能电站安全参与电网一次调频的优化控制策略[J]. 中国电力, 2022, 55(2): 19-27. |
[11] | 周鑫, 林镜星, 谢志炜, 张铮, 梁濡铎, 欧祖宏. 基于数据增强及降维方法的配网业扩工程分类模型[J]. 中国电力, 2022, 55(12): 91-97. |
[12] | 陈崇德, 郭强, 宋子秋, 胡阳. 计及碳收益的风电场混合储能容量优化配置[J]. 中国电力, 2022, 55(12): 22-33. |
[13] | 彭春华, 刘懿, 孙惠娟. 计及条件风险成本的含EH-CSP电站多源发电系统优化运行[J]. 中国电力, 2022, 55(1): 64-74. |
[14] | 陈浩, 胡俊杰, 袁海峰, 周华嫣然, 罗魁. 计及配电网拥塞的集群电动汽车参与二次调频方法研究[J]. 中国电力, 2021, 54(12): 162-169. |
[15] | 丁明, 施建雄, 韩平平, 林子豪, 张宇. 光储系统参与电网调频及调峰的综合控制策略[J]. 中国电力, 2021, 54(1): 116-123,174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||