[1] 何宗宇. 供电公司业扩管理系统的设计与实现[D]. 西安: 西安电子科技大学, 2019. HE Zongyu. Design and implementation of the expansion management system in power supply company[D]. Xi'an: Xidian University, 2019. [2] 赵钢. 基于PCM模式的BD电力公司业扩工程质量管理研究[D]. 北京: 华北电力大学(北京), 2017. ZHAO Gang. Research on industry expansion project quality management of BD electric power company based on PCM model[D]. Beijing: North China Electric Power University, 2017. [3] 王鹏, 张朋宇, 高亚静, 等. 监管视角下的电力市场用户分类指标体系及算法研究[J]. 中国电力, 2018, 51(12): 139–148 WANG Peng, ZHANG Pengyu, GAO Yajing, et al. Research on index system and algorithm of customer classification in electricity market from the regulatory perspective[J]. Electric Power, 2018, 51(12): 139–148 [4] 靳冰洁, 林勇, 罗澍忻, 等. 基于负荷特性聚类及Elastic Net分析的短期负荷预测方法[J]. 中国电力, 2020, 53(9): 221–228 JIN Bingjie, LIN Yong, LUO Shuxin, et al. A short-term load forecasting method based on load curve clustering and elastic net analysis[J]. Electric Power, 2020, 53(9): 221–228 [5] 杨彪, 颜伟, 莫静山. 考虑源荷功率随机性和相关性的主导节点选择与无功分区方法[J]. 电力系统自动化, 2021, 45(11): 61–67 YANG Biao, YAN Wei, MO Jingshan. Pilot-bus selection and network partitioning method considering randomness and correlation of source-load power[J]. Automation of Electric Power Systems, 2021, 45(11): 61–67 [6] 陶彩霞, 王旭, 高锋阳. 基于深度信念网络的光伏阵列故障诊断[J]. 中国电力, 2019, 52(12): 105–112 TAO Caixia, WANG Xu, GAO Fengyang, et al. Fault Diagnosis of Photovoltaic Array Based on Deep Belief Network[J]. Electric Power, 2019, 52(12): 105–112 [7] 荆澜涛, 石啸林, 张彬, 等. 基于LSTM-FCM聚类的专变私下扩容监测方法研究[J]. 电网技术, 2022, 46(10): 3952–3960 JING Lantao, SHI Xiaolin, ZHANG Bin, et al. Monitoring method of transformer private expansion based on LSTM-FCM clustering[J]. Power System Technology, 2022, 46(10): 3952–3960 [8] 吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1): 231–238 Lü Weijie, FANG Yifan, CHENG Ze. Prediction of day-ahead photovoltaic output based on FCM-WS-CNN[J]. Power System Technology, 2022, 46(1): 231–238 [9] 吴亚雄, 高崇, 曹华珍, 等. 基于灰狼优化聚类算法的日负荷曲线聚类分析[J]. 电力系统保护与控制, 2020, 48(6): 68–76 WU Yaxiong, GAO Chong, CAO Huazhen, et al. Clustering analysis of daily load curves based on GWO algorithm[J]. Power System Protection and Control, 2020, 48(6): 68–76 [10] 武超飞, 孙冲, 刘厦, 等. 基于改进FCM聚类的窃电行为检测[J]. 电力科学与技术学报, 2021, 36(6): 164–170 WU Chaofei, SUN Chong, LIU Sha, et al. Detection of stealing electricity energy based on improved fuzzy C-means clustering[J]. Journal of Electric Power Science and Technology, 2021, 36(6): 164–170 [11] 马宗彪, 许素安, 朱少斌, 等. 基于特征加权模糊聚类的电力负荷分类[J]. 中国电力, 2022, 55(6): 25–32 MA Zongbiao, XU Suan, ZHU Shaobin, et al. Power load classification based on feature weighted fuzzy clustering[J]. Electric Power, 2022, 55(6): 25–32 [12] 张永库, 尹灵雪, 孙劲光. 基于改进的遗传算法的模糊聚类算法[J]. 智能系统学报, 2015, 10(4): 627–635 ZHANG Yongku, YIN Lingxue, SUN Jinguang. Fuzzy clustering algorithm based on the improved genetic algorithm[J]. CAAI Transactions on Intelligent Systems, 2015, 10(4): 627–635 [13] 杨东升, 吉明佳, 周博文, 等. 基于双生成器生成对抗网络的电力系统暂态稳定评估方法[J]. 电网技术, 2021, 45(8): 2934–2945 YANG Dongsheng, JI Mingjia, ZHOU Bowen, et al. Transient stability assessment of power system based on DGL-GAN[J]. Power System Technology, 2021, 45(8): 2934–2945 [14] 白雅玲, 周亚同, 刘君. 基于深度卷积嵌入聚类的日负荷曲线聚类分析[J]. 电网技术, 2022, 46(6): 2104–2113 BAI Yaling, ZHOU Yatong, LIU Jun. Clustering analysis of daily load curve based on deep convolution embedding clustering[J]. Power System Technology, 2022, 46(6): 2104–2113 [15] 刘文慧, 徐遵义, 张旭冉, 等. 基于互信息和PCA理论的湿法烟气脱硫工况特征提取方法[J]. 中国电力, 2020, 53(8): 158–163 LIU Wenhui, XU Zunyi, ZHANG Xuran, et al. Feature extraction method for wet flue gas desulfurization under operating conditions based on mutual information and PCA theory[J]. Electric Power, 2020, 53(8): 158–163 [16] 汪颖, 杨维, 肖先勇, 等. 基于去噪自编码器网络特征降维与改进小批优化K均值算法的海量用户用电行为聚类及分析[J]. 电力自动化设备, 2022, 42(6): 146–153 WANG Ying, YANG Wei, XIAO Xianyong, et al. Clustering and analysis of electricity consumption behavior of massive users based on network feature dimension reduction of denoising autoencoder and improved mini-batch K-means algorithm[J]. Electric Power Automation Equipment, 2022, 42(6): 146–153 [17] 赵忠啟, 常喜强, 樊艳芳, 等. 基于自编码器的电力负荷聚类分析[J]. 科学技术与工程, 2021, 21(32): 13737–13743 ZHAO Zhongqi, CHANG Xiqiang, FAN Yanfang, et al. Clustering analysis of power load curve based on auto-encoder[J]. Science Technology and Engineering, 2021, 21(32): 13737–13743 [18] 廖一帆, 武志刚. 基于迁移学习与Wasserstein生成对抗网络的静态电压稳定临界样本生成方法[J]. 电网技术, 2021, 45(9): 3722–3728 LIAO Yifan, WU Zhigang. Critical sample generation method for static voltage stability based on transfer learning and Wasserstein generative adversarial network[J]. Power System Technology, 2021, 45(9): 3722–3728 [19] 殷豪, 丁伟锋, 陈顺, 等. 基于生成对抗网络和纵横交叉粒子群算法的光伏数据缺失重构方法[J]. 电网技术, 2022, 46(4): 1372–1381 YIN Hao, DING Weifeng, CHEN Shun, et al. Reconstruction method for missing data in photovoltaic based on generative adversarial network and crisscross particle swarm optimization algorithm[J]. Power System Technology, 2022, 46(4): 1372–1381 [20] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the 34 th International Conference on Machine Learning-Volume 70. Sydney, NSW, Australia. New York: ACM, 2017: 214223. [21] LIU Y J, DING K, ZHANG J W, et al. Fault diagnosis approach for photovoltaic array based on the stacked auto-encoder and clustering with I-V curves[J]. Energy Conversion and Management, 2021, 245: 114603. [22] GU B, SHEN H Q, LEI X H, et al. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method[J]. Applied Energy, 2021, 299: 117291. [23] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51–67. [24] 李宜伦, 张异殊, 宋光. 基于改进鲸鱼算法的电流互感器J-A模型磁滞参数识别[J]. 中国电力, 2022, 55(2): 190–199 LI Yilun, ZHANG Yishu, SONG Guang. Hysteresis parameter identification of J-a model current transformer based on improved whale algorithm[J]. Electric Power, 2022, 55(2): 190–199 [25] MENG A B, CHEN S, OU Z H, et al. A novel few-shot learning approach for wind power prediction applying secondary evolutionary generative adversarial network[J]. Energy, 2022, 261: 125276.
|