[1] 习近平. 在第七十五届联合国大会一般性辩论上的讲话[EB/OL].(2020-09-22)[2021-09-20] http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm. [2] CASALS M, GANGOLELLS M, MACARULLA M, et al. Assessing the effectiveness of gamification in reducing domestic energy consumption: lessons learned from the EnerGAware Project[J]. Energy and Buildings, 2020, 210: 109753. [3] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171–191 ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171–191 [4] 程春田. 碳中和下的水电角色重塑及其关键问题[J]. 电力系统自动化, 2021, 45(16): 29–36 CHENG Chuntian. Function remolding of hydropower systems for carbon neutral and its key problems[J]. Automation of Electric Power Systems, 2021, 45(16): 29–36 [5] 程海花, 寇宇, 周琳, 等. 面向清洁能源消纳的流域型风光水多能互补基地协同优化调度模式与机制[J]. 电力自动化设备, 2019, 39(10): 61–70 CHENG Haihua, KOU Yu, ZHOU Lin, et al. Collaborative optimal dispatching mode and mechanism of watershed-type wind-solar-water multi-energy complementary bases for clean energy absorption[J]. Electric Power Automation Equipment, 2019, 39(10): 61–70 [6] 张政, 程春田, 李泽宏, 等. 水电站群短期调峰优化模型目标函数比较研究[J]. 电网技术, 2021, 45(9): 3523–3533 ZHANG Zheng, CHENG Chuntian, LI Zehong, et al. Comparative study on objective functions of short-term peak shaving optimization models for hydropower stations[J]. Power System Technology, 2021, 45(9): 3523–3533 [7] 王富阳, 刘友波, 胥威汀, 等. 计及市场化电价信号导向的含高比例水电输电网扩展规划[J]. 电力自动化设备, 2021, 41(11): 190–198 WANG Fuyang, LIU Youbo, XU Weiting, et al. Expansion planning of transmission network with high proportion of hydropower considering guidance of marketized electricity price signal[J]. Electric Power Automation Equipment, 2021, 41(11): 190–198 [8] 朱睿, 胡博, 谢开贵, 等. 含风电–光伏–光热–水电–火电–储能的多能源电力系统时序随机生产模拟[J]. 电网技术, 2020, 44(9): 3246–3253 ZHU Rui, HU Bo, XIE Kaigui, et al. Sequential probabilistic production simulation of multi-energy power system with wind power, photovoltaics, concentrated solar power, cascading hydro power, thermal power and battery energy storage[J]. Power System Technology, 2020, 44(9): 3246–3253 [9] 全国水力资源复查工作领导小组. 中华人民共和国水力资源复查成果(2003年)总报告[R]. 北京: 中国电力出版社, 2004. [10] 罗仕华, 胡维昊, 黄琦, 等. 市场机制下光伏/小水电/抽水蓄能电站系统容量优化配置[J]. 电工技术学报, 2020, 35(13): 2792–2804 LUO Shihua, HU Weihao, HUANG Qi, et al. Optimization of photovoltaic/small hydropower/pumped storage power station system sizing under the market mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2792–2804 [11] TANG Y J, FANG G H, TAN Q F, et al. Optimizing the sizes of wind and photovoltaic power plants integrated into a hydropower station based on power output complementarity[J]. Energy Conversion and Management, 2020, 206: 112465. [12] PAPAEFTHYMIOU S V, PAPATHANASSIOU S A. Optimum sizing of wind-pumped-storage hybrid power stations in island systems[J]. Renewable Energy, 2014, 64: 187–196. [13] XU X, HU W H, CAO D, et al. Optimized sizing of a standalone PV-wind-hydropower station with pumped-storage installation hybrid energy system[J]. Renewable Energy, 2020, 147: 1418–1431. [14] ZHANG Y S, LIAN J J, MA C, et al. Optimal sizing of the grid-connected hybrid system integrating hydropower, photovoltaic, and wind considering cascade reservoir connection and photovoltaic-wind complementarity[J]. Journal of Cleaner Production, 2020, 274: 123100. [15] 胡源, 薛松, 杨素, 等. 综合能源背景下的配电网多场景规划[J]. 中国电力, 2021, 54(4): 175–184 HU Yuan, XUE Song, YANG Su, et al. Multi-scenario planning of distribution network in the context of integrated energy[J]. Electric Power, 2021, 54(4): 175–184 [16] SéGUIN S, FLETEN S E, C?Té P, et al. Stochastic short-term hydropower planning with inflow scenario trees[J]. European Journal of Operational Research, 2017, 259(3): 1156–1168. [17] XU B, ZHU F L, ZHONG P G, et al. Identifying long-term effects of using hydropower to complement wind power uncertainty through stochastic programming[J]. Applied Energy, 2019, 253: 113535. [18] TAN Q F, LEI X H, WEN X, et al. Two-stage stochastic optimal operation model for hydropower station based on the approximate utility function of the carryover stage[J]. Energy, 2019, 183: 670–682. [19] WU M, KOU L F, HOU X G, et al. A bi-level robust planning model for active distribution networks considering uncertainties of renewable energies[J]. International Journal of Electrical Power & Energy Systems, 2019, 105: 814–822. [20] ZARE A, CHUNG C Y, ZHAN J P, et al. A distributionally robust chance-constrained MILP model for multistage distribution system planning with uncertain renewables and loads[J]. IEEE Transactions on Power Systems, 2018, 33(5): 5248–5262. [21] 孙可, 张全明, 王蕾, 等. 考虑安全裕度的微电网两阶段鲁棒规划[J]. 电网技术, 2020, 44(12): 4617–4626 SUN Ke, ZHANG Quanming, WANG Lei, et al. Two-stage robust planning for microgrid considering security margin[J]. Power System Technology, 2020, 44(12): 4617–4626 [22] ARTHUR D, VASSILVITSKII S. K-means++: the advantages of careful seeding[C]//Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. New Orleans, Louisiana. New York: ACM, 2007: 1027–1035. [23] DER MAATEN L V, HINTON G E. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008: 2579–2605. [24] BERTSIMAS D, LITVINOV E, SUN X A, et al. Adaptive robust optimization for the security constrained unit commitment problem[J]. IEEE Transactions on Power Systems, 2013, 28(1): 52–63. [25] CHEN Z, WU L, FU Y. Real-time price-based demand response management for residential appliances via stochastic optimization and robust optimization[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1822–1831. [26] 陈景东, 赵沛. 碳交易试点政策与电力行业碳减排[J]. 中国电力, 2021, 54(12): 156–161 CHEN Jingdong, ZHAO Pei. Carbon emissions trading pilot policy and power industry emissions reductions[J]. Electric Power, 2021, 54(12): 156–161 [27] 袁智勇, 雷金勇, 周长城, 等. 考虑配网网络结构的分散式风电最大准入容量研究[J]. 南方电网技术, 2020, 14(9): 73–79 YUAN Zhiyong, LEI Jinyong, ZHOU Changcheng, et al. Research on maximum allowable capacity of dispersed wind farm in distribution network considering network structure[J]. Southern Power System Technology, 2020, 14(9): 73–79
|