中国电力 ›› 2024, Vol. 57 ›› Issue (6): 45-52.DOI: 10.11930/j.issn.1004-9649.202401124
彭昊1(), 罗正经1(
), 夏向阳2(
), 曾刚1(
), 欧宇健1(
), 陈贵全2(
), 王继军1(
), 刘立洪1(
)
收稿日期:
2024-01-30
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
彭昊(1992—),男,工程师,从事电网工程设计及新能源储能系统技术研究,E-mail:774808249@qq.com基金资助:
Hao PENG1(), Zhengjing LUO1(
), Xiangyang XIA2(
), Gang ZENG1(
), Yujian OU1(
), Guiquan CHEN2(
), Jijun WANG1(
), Lihong LIU1(
)
Received:
2024-01-30
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
针对储能系统中多电池簇健康状态均衡问题,提出储能系统多电池簇健康状态均衡控制策略,该策略依据电池寿命变化规律和并网要求设置储能变流器并网功率下限,基于该下限确定系统参与运行的储能变流器台数,再结合层次分析法对参与运行的各电池簇健康状态进行量化评价,求得各储能变流器承担并网功率指令的权重系数和相应的功率大小,调整参与运行的储能变流器台数和传输功率以确保各储能变流器功率不越限。将所提控制策略与均摊控制策略相比,结果表明,所提策略可有效均衡各电池簇健康状态,延长储能电站整体使用寿命40.6%,有效提高了储能电站的安全性和经济性。
彭昊, 罗正经, 夏向阳, 曾刚, 欧宇健, 陈贵全, 王继军, 刘立洪. 储能系统多电池簇健康状态均衡控制策略[J]. 中国电力, 2024, 57(6): 45-52.
Hao PENG, Zhengjing LUO, Xiangyang XIA, Gang ZENG, Yujian OU, Guiquan CHEN, Jijun WANG, Lihong LIU. Health State Equalization Control Strategy for Multi-battery Clusters in Energy Storage Systems[J]. Electric Power, 2024, 57(6): 45-52.
SOH1 | SOH2 | ··· | SOHm | |||||
SOH1 | 1 | a12 | ··· | a1m | ||||
SOH2 | a21 | 1 | ··· | a2m | ||||
SOHm | am1 | am2 | ··· | 1 |
表 1 目标层和指标层判断矩阵
Table 1 Judgment matrix of goal and indicator levels
SOH1 | SOH2 | ··· | SOHm | |||||
SOH1 | 1 | a12 | ··· | a1m | ||||
SOH2 | a21 | 1 | ··· | a2m | ||||
SOHm | am1 | am2 | ··· | 1 |
参数 | 数值 | |
储能系统直流侧电压/V | 800 | |
电网电压/V | 380 | |
储能系统交流侧电感/mH | 21 | |
单台PCS额定运行功率/kW | 15 | |
单台PCS转换功率下限/kW | 6 | |
SOH1/% | 98 | |
SOH2/% | 94 | |
SOH3/% | 92 | |
SOH4/% | 90 |
表 2 部分仿真参数
Table 2 Partial simulation parameters
参数 | 数值 | |
储能系统直流侧电压/V | 800 | |
电网电压/V | 380 | |
储能系统交流侧电感/mH | 21 | |
单台PCS额定运行功率/kW | 15 | |
单台PCS转换功率下限/kW | 6 | |
SOH1/% | 98 | |
SOH2/% | 94 | |
SOH3/% | 92 | |
SOH4/% | 90 |
因素i比因素j | 量化值 | |
同等重要 | 1 | |
稍微重要 | 3 | |
较强重要 | 5 | |
强烈重要 | 7 | |
极端重要 | 9 | |
两相邻判断的中间值 | 2,4,6,8 |
表 3 电池簇健康状态评分参考表
Table 3 Scoring reference of battery cluster health state
因素i比因素j | 量化值 | |
同等重要 | 1 | |
稍微重要 | 3 | |
较强重要 | 5 | |
强烈重要 | 7 | |
极端重要 | 9 | |
两相邻判断的中间值 | 2,4,6,8 |
SOH1 | SOH2 | SOH3 | SOH4 | |||||
SOH1 | 1 | 8.2/6.6 | 8.2/5.8 | 8.2/5 | ||||
SOH2 | 6.6/8.2 | 1 | 6.6/5.8 | 6.6/5 | ||||
SOH3 | 5.8/8.2 | 5.8/6.6 | 1 | 5.8/5 | ||||
SOH4 | 5/8.2 | 5/6.6 | 5/5.8 | 1 |
表 4 目标层和指标层判断矩阵
Table 4 Judgment matrix for goal and indicator levels
SOH1 | SOH2 | SOH3 | SOH4 | |||||
SOH1 | 1 | 8.2/6.6 | 8.2/5.8 | 8.2/5 | ||||
SOH2 | 6.6/8.2 | 1 | 6.6/5.8 | 6.6/5 | ||||
SOH3 | 5.8/8.2 | 5.8/6.6 | 1 | 5.8/5 | ||||
SOH4 | 5/8.2 | 5/6.6 | 5/5.8 | 1 |
SOH1 | SOH2 | SOH3 | SOH4 | |||||
SOH1 | 0.3203 | 0.3203 | 0.3203 | 0.3203 | ||||
SOH2 | 0.2578 | 0.2578 | 0.2578 | 0.2578 | ||||
SOH3 | 0.2266 | 0.2266 | 0.2266 | 0.2266 | ||||
SOH4 | 0.1953 | 0.1953 | 0.1953 | 0.1953 |
表 5 归一化后的目标层和指标层判断矩阵
Table 5 Normalized judgment matrices for target and indicator levels
SOH1 | SOH2 | SOH3 | SOH4 | |||||
SOH1 | 0.3203 | 0.3203 | 0.3203 | 0.3203 | ||||
SOH2 | 0.2578 | 0.2578 | 0.2578 | 0.2578 | ||||
SOH3 | 0.2266 | 0.2266 | 0.2266 | 0.2266 | ||||
SOH4 | 0.1953 | 0.1953 | 0.1953 | 0.1953 |
SOH1 | SOH2 | SOH3 | ||||
SOH1 | 1 | 8.2/6.6 | 8.2/5.8 | |||
SOH2 | 6.6/8.2 | 1 | 6.6/5.8 | |||
SOH3 | 5.8/8.2 | 5.8/6.6 | 1 |
表 6 新的目标层和指标层判断矩阵
Table 6 Judgment matrix of new goal and indicator level
SOH1 | SOH2 | SOH3 | ||||
SOH1 | 1 | 8.2/6.6 | 8.2/5.8 | |||
SOH2 | 6.6/8.2 | 1 | 6.6/5.8 | |||
SOH3 | 5.8/8.2 | 5.8/6.6 | 1 |
1 |
舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23 (6): 61- 69.
DOI |
SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23 (6): 61- 69.
DOI |
|
2 | 张嘉诚, 夏向阳, 邓子豪, 等. 储能电站安全参与电网一次调频的优化控制策略[J]. 中国电力, 2022, 55 (2): 19- 27. |
ZHANG Jiacheng, XIA Xiangyang, DENG Zihao, et al. Optimal control strategy for energy storage power station in primary frequency regulation of power grid[J]. Electric Power, 2022, 55 (2): 19- 27. | |
3 | 文劲宇, 周博, 魏利屾. 中国未来电力系统储电网初探[J]. 电力系统保护与控制, 2022, 50 (7): 1- 10. |
WEN Jinyu, ZHOU Bo, WEI Lishen. Preliminary study on an energy storage grid for future power system in China[J]. Power System Protection and Control, 2022, 50 (7): 1- 10. | |
4 |
MCILWAINE N, FOLEY A M, BEST R, et al. Modelling the effect of distributed battery energy storage in an isolated power system[J]. Energy, 2023, 263, 125789.
DOI |
5 | 周姝灿, 卢洵, 刘新苗, 等. 大容量锂电池储能电站的等值仿真方法[J]. 南方电网技术, 2022, 16 (4): 30- 38. |
ZHOU Shucan, LU Xun, LIU Xinmiao, et al. Equivalent simulation method for large capacity lithium battery energy storage power station[J]. Southern Power System Technology, 2022, 16 (4): 30- 38. | |
6 |
WANG X Y, WEI X Z, ZHU J G, et al. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management[J]. eTransportation, 2021, 7, 100093.
DOI |
7 | 谢小荣, 马宁嘉, 刘威, 等. 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43 (1): 158- 168. |
XIE Xiaorong, MA Ningjia, LIU Wei, et al. Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43 (1): 158- 168. | |
8 |
BARCELLONA S, COLNAGO S, CODECASA L, et al. Unified model of lithium-ion battery and electrochemical storage system[J]. Journal of Energy Storage, 2023, 73, 109202.
DOI |
9 | DU J Y, ZHANG X B, WANG T Z, et al. Battery degradation minimization oriented energy management strategy for plug-in hybrid electric bus with multi-energy storage system[J]. Energy, 2018, 165, 153- 163. |
10 | 薄利明, 郑惠萍, 张世锋, 等. 锂电池健康状态均衡技术综述[J]. 电测与仪表, 2023, 60 (4): 11- 18. |
BO Liming, ZHENG Huiping, ZHANG Shifeng, et al. Review on health state equalization technology for lithium batteries[J]. Electrical Measurement & Instrumentation, 2023, 60 (4): 11- 18. | |
11 | 周頔, 宋显华, 卢文斌, 等. 基于日常片段充电数据的锂电池健康状态实时评估方法研究[J]. 中国电机工程学报, 2019, 39 (1): 105- 111. |
ZHOU Di, SONG Xianhua, LU Wenbin, et al. Real-time SOH estimation algorithm for lithium-ion batteries based on daily segment charging data[J]. Proceedings of the CSEE, 2019, 39 (1): 105- 111. | |
12 |
SHILI S, HIJAZI A, SARI A L, et al. Balancing circuit new control for supercapacitor storage system lifetime maximization[J]. IEEE Transactions on Power Electronics, 2017, 32 (6): 4939- 4948.
DOI |
13 | LACEY G L. Balancing 2nd life batteries with different SOH for use in storage systems[C]//CIRED 2021 - The 26th International Conference and Exhibition on Electricity Distribution. Online Conference. London: IET, 2021: 1832–1837. |
14 |
LI N, GAO F, HAO T Q, et al. SOH balancing control method for the MMC battery energy storage system[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (8): 6581- 6591.
DOI |
15 | 李楠, 高峰. 基于储能型模块化多电平系统的多时间尺度控制策略[J]. 电工技术学报, 2017, 32 (17): 47- 56. |
LI Nan, GAO Feng. Multi-time scale operational principle for battery integrated modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2017, 32 (17): 47- 56. | |
16 |
MA Z, GAO F, GU X, et al. Multilayer SOH equalization scheme for MMC battery energy storage system[J]. IEEE Transactions on Power Electronics, 2020, 35 (12): 13514- 13527.
DOI |
17 | 吴青峰, 智泽英, 于少娟, 等. 基于多代理的微电网分布式储能系统健康状态平衡方案[J]. 太阳能学报, 2022, 43 (2): 104- 112. |
WU Qingfeng, ZHI Zeying, YU Shaojuan, et al. Soh balancing scheme for distributed energy storage systems in microgrid based on multi-agent[J]. Acta Energiae Solaris Sinica, 2022, 43 (2): 104- 112. | |
18 |
GAO X J, WU X G, XIA Y L, et al. Life extension of a multi-unit energy storage system by optimizing the power distribution based on the degradation ratio[J]. Energy, 2024, 286, 129598.
DOI |
19 |
TREMBLAY O, DESSAINT L A. Experimental validation of a battery dynamic model for EV applications[J]. World Electric Vehicle Journal, 2009, 3 (2): 289- 298.
DOI |
20 |
OMAR N, ABDEL MONEM M, FIROUZ Y, et al. Lithium iron phosphate based battery: assessment of the aging parameters and development of cycle life model[J]. Applied Energy, 2014, 113, 1575- 1585.
DOI |
21 | SIMULINK: Generic battery model[EB/OL].https://www.mathworks.com/help/releases/R2022a/physmod/sps/powersys/ref/battery.html. |
22 | 王聪聪, 叶思成, 裴春兴, 等. 电池健康状态实验与评估方法综述[J]. 电池, 2021, 51 (2): 197- 200. |
WANG Congcong, YE Sicheng, PEI Chunxing, et al. Review on battery state-of-health experiment and estimation methods[J]. Battery Bimonthly, 2021, 51 (2): 197- 200. | |
23 | 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55 (8): 73- 86, 95. |
LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55 (8): 73- 86, 95. | |
24 | 夏向阳, 陈贵全, 刘俊翔, 等. 储能系统直流侧纹波电流对锂离子电池寿命影响分析及优化控制策略[J]. 电工技术学报, 2023, 38 (22): 6218- 6229. |
XIA Xiangyang, CHEN Guiquan, LIU Junxiang, et al. Analysis and optimization control strategy of the impact of DC ripple current on the lifespan of lithium-ion batteries in energy storage systems[J]. Journal of Electrical Engineering, 2023, 38 (22): 6218- 6229. | |
25 |
BESSMAN A, SOARES R, WALLMARK O, et al. Aging effects of AC harmonics on lithium-ion cells[J]. Journal of Energy Storage, 2019, 21, 741- 749.
DOI |
26 | BALA S, TENGNÉR T, ROSENFELD P, et al. The effect of low frequency current ripple on the performance of a Lithium Iron Phosphate (LFP) battery energy storage system[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE). Raleigh, NC, USA. IEEE, 2012: 3485–3492. |
27 | 张雪. 非隔离型光伏并网逆变器高效MPPT控制方法研究[D]. 广州: 华南理工大学, 2012. |
ZHANG Xue. Study of high efficiency MPPT control method of non-isolated grid-connected PV inverter[D]. Guangzhou: South China University of Technology, 2012. | |
28 | 张思章. 高频隔离型并网逆变器的研制[D]. 广州: 华南理工大学, 2012. |
ZHANG Sizhang. Development of high frequency isolated grid-connected inverter[D]. Guangzhou: South China University of Technology, 2012. |
[1] | 张磊, 马晓伟, 王满亮, 陈力, 高丙团. 互联新能源电力系统区内AGC机组分布式协同控制策略[J]. 中国电力, 2025, 58(3): 8-19. |
[2] | 刘雨姗, 陈俊儒, 常喜强, 刘牧阳. 构网型储能变流器并网性能的多层级评价指标体系及应用[J]. 中国电力, 2025, 58(3): 193-203. |
[3] | 丰力, 张莲梅, 韦家佳, 邓长虹, 李果, 尹家悦. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57(9): 80-93. |
[4] | 刘钟淇, 刘耀, 侯金鸣. 以深远海风电为核心的能源岛能源外送经济性分析[J]. 中国电力, 2024, 57(9): 94-102. |
[5] | 倪筹帷, 陈杨, 张雪松, 林达, 杜凯健, 陈健. 考虑安全性风险的电热氢系统优化配置方法[J]. 中国电力, 2024, 57(9): 124-135. |
[6] | 李鲁阳, 陈龙翔, 陈磊, 孙大卫, 吴林林, 闵勇. 用于新能源一次调频的储能经济配置研究[J]. 中国电力, 2024, 57(7): 54-65. |
[7] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王焕昌, 张帅, 赵凤展. 计及运行灵活性的中压配电系统源-网-储协同扩展规划[J]. 中国电力, 2024, 57(7): 98-108. |
[8] | 曹宇, 胡鹏飞, 蔡婉琪, 王曦, 江道灼, 梁一桥. 基于MMC的超级电容与蓄电池混合储能系统及其混合同步控制策略[J]. 中国电力, 2024, 57(6): 78-89. |
[9] | 李梓萌, 王天阔, 胡鹏飞, 于彦雪, 杜翼, 蔡期塬. 基于能量枢纽的沼–风–光综合能源系统双层协同优化配置[J]. 中国电力, 2024, 57(4): 1-13. |
[10] | 王益斌, 陈飞雄, 邵振国, 张抒凌, 张伟骏, 李智诚. 基于权重系数校正的火储两阶段联合调频方法[J]. 中国电力, 2024, 57(3): 83-94. |
[11] | 张栋顺, 全恒立, 谢桦, 许志鸿, 陶雅芸, 王慧圣. 考虑碳交易机制与氢混天然气的园区综合能源系统调度策略[J]. 中国电力, 2024, 57(2): 183-193. |
[12] | 夏向阳, 蒋戴宇, 曾小勇, 龚芬, 吴小忠, 华夏, 罗彦鹏, 石超. 基于虚拟振荡器控制的储能变流器控制策略研究[J]. 中国电力, 2024, 57(11): 70-77. |
[13] | 李世龙, 李龙江, 刘欣博, 张华. 一种增强稳定性的储能变流器线性自抗扰控制参数整定方法[J]. 中国电力, 2024, 57(10): 25-35. |
[14] | 孙志媛, 彭博雅, 孙艳. 考虑多能互补的电力电量平衡优化调度策略[J]. 中国电力, 2024, 57(1): 115-122. |
[15] | 卢子敬, 李子寿, 郭相国, 杨博. 基于多目标人工蜂鸟算法的电-氢混合储能系统最优配置[J]. 中国电力, 2023, 56(7): 33-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||