中国电力 ›› 2023, Vol. 56 ›› Issue (10): 164-170.DOI: 10.11930/j.issn.1004-9649.202210046
张宏杰1(), 陈贵凤2, 闫宏伟2, 杨晓龙2, 侯天仁2, 张伟3
收稿日期:
2022-10-13
出版日期:
2023-10-28
发布日期:
2023-10-31
作者简介:
张宏杰(1970—),男,高级工程师,从事电力调度自动化及网络安全技术研究,E-mail: 18611131339@163.com
基金资助:
Hongjie ZHANG1(), Guifeng CHEN2, Hongwei YAN2, Xiaolong YANG2, Tianren HOU2, Wei ZHANG3
Received:
2022-10-13
Online:
2023-10-28
Published:
2023-10-31
Supported by:
摘要:
随着电力信息化的提高,智能算法结合历史数据进行变压器故障诊断的方法越来越受到关注。在溶解气体分析法基础上借助少数类样本过采样(SMOTE)算法合成新样本,实现样本多维度扩充,并以贝叶斯优化算法寻找长短期记忆(LSTM)网络模型参数的最优设置值,以降低训练集错误率,进而建立了变压器故障诊断模型。结果表明:样本扩充后的变压器故障诊断模型过拟合度降低约20%,测试集准确率提升约10%。
张宏杰, 陈贵凤, 闫宏伟, 杨晓龙, 侯天仁, 张伟. 基于SMOTE与Bayes优化的LSTM网络变压器故障诊断[J]. 中国电力, 2023, 56(10): 164-170.
Hongjie ZHANG, Guifeng CHEN, Hongwei YAN, Xiaolong YANG, Tianren HOU, Wei ZHANG. Fault Diagnosis of LSTM Network Tansformer Based on SMOTE and Bayes Optimization[J]. Electric Power, 2023, 56(10): 164-170.
序号 | H2 | CH4 | C2H6 | C2H4 | C2H2 | |||||
1 | 78.0 | 28.00 | 13.00 | 29.00 | 110.00 | |||||
2 | 0.0 | 5.20 | 5.12 | 9.58 | 14.60 | |||||
3 | 66.0 | 8.27 | 8.21 | 9.21 | 8.21 | |||||
4 | 49.1 | 12.20 | 0.30 | 3.90 | 4.80 | |||||
5 | 59.0 | 10.40 | 4.00 | 10.00 | 12.70 | |||||
6 | 30.0 | 7.40 | 8.50 | 1.80 | 19.00 | |||||
7 | 176.0 | 206.00 | 47.70 | 75.70 | 68.70 | |||||
8 | 345.0 | 112.30 | 27.50 | 51.50 | 58.80 | |||||
9 | 61.5 | 24.60 | 1.33 | 5.60 | 20.50 | |||||
10 | 58.0 | 44.90 | 11.00 | 20.60 | 23.50 | |||||
11 | 86.0 | 112.00 | 67.00 | 46.00 | 85.80 | |||||
12 | 20.0 | 13.00 | 35.00 | 27.00 | 36.30 | |||||
13 | 2781.0 | 1293.00 | 248.00 | 23.00 | 84.00 |
表 1 低能放电故障下气体溶解含量数据集
Table 1 Data set of dissolved gas content under low energy discharge fault 单位:μL/L
序号 | H2 | CH4 | C2H6 | C2H4 | C2H2 | |||||
1 | 78.0 | 28.00 | 13.00 | 29.00 | 110.00 | |||||
2 | 0.0 | 5.20 | 5.12 | 9.58 | 14.60 | |||||
3 | 66.0 | 8.27 | 8.21 | 9.21 | 8.21 | |||||
4 | 49.1 | 12.20 | 0.30 | 3.90 | 4.80 | |||||
5 | 59.0 | 10.40 | 4.00 | 10.00 | 12.70 | |||||
6 | 30.0 | 7.40 | 8.50 | 1.80 | 19.00 | |||||
7 | 176.0 | 206.00 | 47.70 | 75.70 | 68.70 | |||||
8 | 345.0 | 112.30 | 27.50 | 51.50 | 58.80 | |||||
9 | 61.5 | 24.60 | 1.33 | 5.60 | 20.50 | |||||
10 | 58.0 | 44.90 | 11.00 | 20.60 | 23.50 | |||||
11 | 86.0 | 112.00 | 67.00 | 46.00 | 85.80 | |||||
12 | 20.0 | 13.00 | 35.00 | 27.00 | 36.30 | |||||
13 | 2781.0 | 1293.00 | 248.00 | 23.00 | 84.00 |
故障类型 | H2 | CH4 | C2H6 | C2H4 | C2H2 | |||||
高温过热 | 3.76~274 | 22.7~766 | 7.22~727.56 | 56~2434.25 | 0~153.36 | |||||
局部放电 | 180.85~ 2587.2 | 0.574~125 | 0.234~137 | 0.188~52 | 0~51.31 | |||||
中温过热 | 19~679 | 27.8~4992 | 20.2~1823 | 30~3671 | 0~95 | |||||
低温过热 | 16~565 | 11.8~170 | 3~597 | 0.6~50.7 | 0~0.7 | |||||
低能放电 | 0~2781 | 5.2~1293 | 0.3~248 | 1.8~75.7 | 4.8~110 | |||||
高能放电 | 31~1678 | 5.5~652.9 | 0.1~80.7 | 4.7~1005.9 | 10~419.1 |
表 2 不同故障类型下的各类气体溶解含量的范围
Table 2 Range of dissolved content of various gases under different fault types 单位:μL/L
故障类型 | H2 | CH4 | C2H6 | C2H4 | C2H2 | |||||
高温过热 | 3.76~274 | 22.7~766 | 7.22~727.56 | 56~2434.25 | 0~153.36 | |||||
局部放电 | 180.85~ 2587.2 | 0.574~125 | 0.234~137 | 0.188~52 | 0~51.31 | |||||
中温过热 | 19~679 | 27.8~4992 | 20.2~1823 | 30~3671 | 0~95 | |||||
低温过热 | 16~565 | 11.8~170 | 3~597 | 0.6~50.7 | 0~0.7 | |||||
低能放电 | 0~2781 | 5.2~1293 | 0.3~248 | 1.8~75.7 | 4.8~110 | |||||
高能放电 | 31~1678 | 5.5~652.9 | 0.1~80.7 | 4.7~1005.9 | 10~419.1 |
采样 过程 | 根样本 | 新样本 | ||||||||||||||||||
H2 | CH4 | C2H6 | C2H4 | C2H2 | H2 | CH4 | C2H6 | C2H4 | C2H2 | |||||||||||
1 | 18.6 | 110.2 | 162.3 | 50.7 | 0.7 | 42.2 | 110.1 | 160.6 | 50.5 | 0.5 | ||||||||||
2 | 101.0 | 169.0 | 595.0 | 34.0 | 0.0 | 100.3 | 169.3 | 595.0 | 34.0 | 0.0 | ||||||||||
3 | 565.0 | 53.0 | 34.0 | 47.0 | 0.0 | 435.1 | 56.6 | 36.1 | 45.5 | 0.0 | ||||||||||
4 | 95.0 | 110.0 | 160.0 | 50.0 | 0.0 | 29.7 | 50.9 | 50.3 | 25.8 | 0.0 | ||||||||||
5 | 16.0 | 38.4 | 70.0 | 28.0 | 0.0 | 16.0 | 38.4 | 62.3 | 24.5 | 0.0 | ||||||||||
6 | 16.0 | 38.4 | 61.5 | 15.8 | 0.0 | 16.0 | 38.4 | 62.0 | 19.2 | 0.0 | ||||||||||
7 | 23.0 | 11.8 | 3.0 | 0.6 | 0.0 | 19.0 | 20.3 | 3.2 | 14.9 | 0.0 |
表 3 SMOTE算法样本扩充
Table 3 Sample expansion of smote algorithm 单位:μL/L
采样 过程 | 根样本 | 新样本 | ||||||||||||||||||
H2 | CH4 | C2H6 | C2H4 | C2H2 | H2 | CH4 | C2H6 | C2H4 | C2H2 | |||||||||||
1 | 18.6 | 110.2 | 162.3 | 50.7 | 0.7 | 42.2 | 110.1 | 160.6 | 50.5 | 0.5 | ||||||||||
2 | 101.0 | 169.0 | 595.0 | 34.0 | 0.0 | 100.3 | 169.3 | 595.0 | 34.0 | 0.0 | ||||||||||
3 | 565.0 | 53.0 | 34.0 | 47.0 | 0.0 | 435.1 | 56.6 | 36.1 | 45.5 | 0.0 | ||||||||||
4 | 95.0 | 110.0 | 160.0 | 50.0 | 0.0 | 29.7 | 50.9 | 50.3 | 25.8 | 0.0 | ||||||||||
5 | 16.0 | 38.4 | 70.0 | 28.0 | 0.0 | 16.0 | 38.4 | 62.3 | 24.5 | 0.0 | ||||||||||
6 | 16.0 | 38.4 | 61.5 | 15.8 | 0.0 | 16.0 | 38.4 | 62.0 | 19.2 | 0.0 | ||||||||||
7 | 23.0 | 11.8 | 3.0 | 0.6 | 0.0 | 19.0 | 20.3 | 3.2 | 14.9 | 0.0 |
方法 | 训练集故障分类 准确率 | 测试集故障分类 准确率 | ||
原样本 | 83.7 | 60.0 | ||
原样本贝叶斯优化 | 100.0 | 70.0 | ||
SMOTE样本 | 88.6 | 88.4 | ||
SMOTE样本贝叶斯优化 | 98.9 | 98.2 |
表 4 变压器故障分类的准确率结果
Table 4 Accuracy results of transformer fault classification 单位:%
方法 | 训练集故障分类 准确率 | 测试集故障分类 准确率 | ||
原样本 | 83.7 | 60.0 | ||
原样本贝叶斯优化 | 100.0 | 70.0 | ||
SMOTE样本 | 88.6 | 88.4 | ||
SMOTE样本贝叶斯优化 | 98.9 | 98.2 |
1 | 廖伟涵, 郭创新, 金宇, 等. 基于四阶段预处理与GBDT的油浸式变压器故障诊断方法[J]. 电网技术, 2019, 43 (6): 2195- 2203. |
LIAO Weihan, GUO Chuangxin, JIN Yu, et al. Oil-immersed transformer fault diagnosis method based on four-stage preprocessing and GBDT[J]. Power System Technology, 2019, 43 (6): 2195- 2203. | |
2 | 夏飞, 罗志疆, 张浩, 等. 混合神经网络在变压器故障诊断中的应用[J]. 电子测量与仪器学报, 2017, 31 (1): 118- 124. |
XIA Fei, LUO Zhijiang, ZHANG Hao, et al. Application of mixed neural network in transformer fault diagnosis[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31 (1): 118- 124. | |
3 | 张奎, 王建南, 王肖峰. 基于神经网络的变压器故障诊断[J]. 电子测量技术, 2017, 40 (12): 98- 101. |
ZHANG Kui, WANG Jiannan, WANG Xiaofeng. Fault diagnosis of transformer based on neural netwo[J]. Electronic Measurement Technology, 2017, 40 (12): 98- 101. | |
4 | 赵峰, 刘君. 基于DGA与神经网络融合的变压器故障诊断方法[J]. 机电工程, 2008, 25 (11): 27- 30, 34. |
ZHAO Feng, LIU Jun. Transformer fault diagnosis approach based on DGA and neural network[J]. Mechanical & Electrical Engineering Magazine, 2008, 25 (11): 27- 30, 34. | |
5 | 缪芸, 缪翼军, 陈红坤, 等. 基于模糊层次分析法与支持向量机的变压器风险评估[J]. 现代电力, 2014, 31 (6): 64- 69. |
MIAO Yun, MIAO Yijun, CHEN Hongkun, et al. Risk assessment of transformer based on fuzzy analytic hierarchy process method and support vector machine[J]. Modern Electric Power, 2014, 31 (6): 64- 69. | |
6 | 熊铠. 基于故障树的电力变压器故障分析[J]. 机电信息, 2019, (30): 25, 28. |
XIONG Kai. Fault analysis of power transformer based on fault tree[J]. Mechanical and Electrical Information, 2019, (30): 25, 28. | |
7 | 张邵杰. 基于烟花算法优化SVM的变压器故障诊断[J]. 机电信息, 2021, (22): 30- 31. |
ZHANG Shaojie. Transformer fault diagnosis based on SVM optimized by fireworks algorithm[J]. Mechanical and Electrical Information, 2021, (22): 30- 31. | |
8 | 夏洪刚, 郭红兵, 肖金超. 基于CNN的电力变压器故障诊断方法[J]. 电子设计工程, 2020, 28 (13): 189- 193. |
XIA Honggang, GUO Hongbing, XIAO Jinchao. Power transformer fault diagnosis method based on CNN[J]. Electronic Design Engineering, 2020, 28 (13): 189- 193. | |
9 | 陈尔奎, 韩清春, 周栾. 基于布谷鸟算法和BP神经网络的矿用变压器故障诊断[J]. 煤炭技术, 2018, 37 (6): 223- 224. |
CHEN Erkui, HAN Qingchun, ZHOU Luan. Fault diagnosis of mine-used transformer based on cuckoo search and BP neural network[J]. Coal Technology, 2018, 37 (6): 223- 224. | |
10 | 陈欢, 彭辉, 舒乃秋, 等. 基于蝙蝠算法优化最小二乘双支持向量机的变压器故障诊断[J]. 高电压技术, 2018, 44 (11): 3664- 3671. |
CHEN Huan, PENG Hui, SHU Naiqiu, et al. Fault diagnosis of transformer based on LS-TSVM optimized by bat algorithm[J]. High Voltage Engineering, 2018, 44 (11): 3664- 3671. | |
11 | 崔宇, 侯慧娟, 胥明凯, 等. 基于双重注意力机制的变压器油中溶解气体预测模型[J]. 中国电机工程学报, 2020, 40 (1): 338- 347, 400. |
CUI Yu, HOU Huijuan, XU Mingkai, et al. A prediction method for dissolved gas in power transformer oil based on dual-stage attention mechanism[J]. Proceedings of the CSEE, 2020, 40 (1): 338- 347, 400. | |
12 | 孙先亮, 谭小波. 基于LSTM的动态网络异常行为检测方法[J]. 沈阳理工大学学报, 2021, 40 (6): 22- 26. |
SUN Xianliang, TAN Xiaobo. Detection method of abnormal behavior of dynamic network based on LSTM[J]. Journal of Shenyang Ligong University, 2021, 40 (6): 22- 26. | |
13 | 陈飞, 程合彬, 王伟光. 基于CNN-LSTMs混合模型的人体行为识别方法[J]. 信息技术与信息化, 2019, (4): 32- 34. |
CHEN Fei, CHENG Hebin, WANG Weiguang. Human behavior recognition method based on CNN-LSTMs mixed model[J]. Information Technology and Informatization, 2019, (4): 32- 34. | |
14 | 徐宇颂, 邹山花, 卢先领. 基于特征选择和组合模型的短期电力负荷预测[J]. 中国电力, 2022, 55 (7): 121- 127. |
XU Yusong, ZOU Shanhua, LU Xianling. Short-term load forecasting based on feature selection and combination model[J]. Electric Power, 2022, 55 (7): 121- 127. | |
15 | 张文斌, 王博翔, 赵长颖. 基于贝叶斯优化的选择性热光伏辐射器设计[J]. 工程热物理学报, 2021, 42 (11): 2965- 2971. |
ZHANG Wenbin, WANG Boxiang, ZHAO Changying. Designing selective thermophotovoltaic emitter through Bayesian optimization[J]. Journal of Engineering Thermophysics, 2021, 42 (11): 2965- 2971. | |
16 | 石怀涛, 尚亚俊, 白晓天, 等. 基于贝叶斯优化的SWDAE-LSTM滚动轴承早期故障预测方法研究[J]. 振动与冲击, 2021, 40 (18): 286- 297. |
SHI Huaitao, SHANG Yajun, BAI Xiaotian, et al. Early fault prediction method combining SWDAE and LSTM for rolling bearings based on Bayesian optimization[J]. Journal of Vibration and Shock, 2021, 40 (18): 286- 297. | |
17 | 杨如民, 陈敏, 余成波. 基于贝叶斯概率优化的Wi-Fi室内定位算法[J]. 计算机应用与软件, 2021, 38 (2): 97- 102, 144. |
YANG Rumin, CHEN Min, YU Chengbo. A Wi-Fi indoor positioning algorithm based on Bayesian probability optimization[J]. Computer Applications and Software, 2021, 38 (2): 97- 102, 144. | |
18 | 石洪波, 陈雨文, 陈鑫. SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 2019, 14 (6): 1073- 1083. |
SHI Hongbo, CHEN Yuwen, CHEN Xin. Summary of research on SMOTE oversampling and its improved algorithms[J]. CAAI Transactions on Intelligent Systems, 2019, 14 (6): 1073- 1083. | |
19 | 李亮, 范瑾, 闫林, 等. 基于混合采样和支持向量机的变压器故障诊断[J]. 中国电力, 2021, 54 (12): 150- 155. |
LI Liang, FAN Jin, YAN Lin, et al. Transformer fault diagnosis based on hybrid sampling and support vector machines[J]. Electric Power, 2021, 54 (12): 150- 155. | |
20 | 张明龙, 张振宇, 罗翔, 等. 基于多核支持向量机的混合扰动波形辨识算法研究[J]. 电力系统保护与控制, 2022, 50 (15): 43- 49. |
ZHANG Minglong, ZHANG Zhenyu, LUO Xiang, et al. Complex disturbance waveform recognition based on a multi-kernel support vector machine[J]. Power System Protection and Control, 2022, 50 (15): 43- 49. | |
21 | 县国成, 王永攀, 高俊, 等. 基于ELM-SVM模型与电能计量大数据的窃电识别技术研究[J]. 智慧电力, 2022, 50 (9): 82- 89. |
XIAN Guocheng, WANG Yongpan, GAO Jun, et al. Power theft identification technology based on ELM-SVM model and big data of electric energy measurement[J]. Smart Power, 2022, 50 (9): 82- 89. | |
22 | 刘海涛, 叶筱怡, 吕干云, 等. 基于BAS-SVM的配电网电压暂降源识别[J]. 中国电力, 2022, 55 (5): 128- 133. |
LIU Haitao, YE Xiaoyi, LÜ Ganyun, et al. Identification of voltage sag source in distribution network based on BAS-SVM[J]. Electric Power, 2022, 55 (5): 128- 133. | |
23 | 王志强, 董忠涛, 王骁龙, 等. 考虑建筑物遮蔽的电力应急通信基站选址双层优化方法[J]. 电力系统保护与控制, 2022, 50 (17): 107- 116. |
WANG Zhiqiang, DONG Zhongtao, WANG Xiaolong, et al. Two-layer optimization method for site selection of a power emergency communication base station considering building shadowing effect[J]. Power System Protection and Control, 2022, 50 (17): 107- 116. | |
24 | 吉兴全, 陈金硕, 张玉敏, 等. 基于CNN-SVM的配电网故障分类研究[J]. 智慧电力, 2022, 50 (1): 94- 100. |
JI Xingquan, CHEN Jinshuo, ZHANG Yumin, et al. Fault classification in distribution network based on CNN-SVM[J]. Smart Power, 2022, 50 (1): 94- 100. | |
25 | 郑业爽, 李世春, 鲁玲. 基于多策略ISOA优化SVM的变压器故障诊断研究[J]. 智慧电力, 2023, 51 (2): 38- 44. |
ZHENG Yeshuang, LI Shichun, LU Ling. Transformer fault diagnosis based on multi-strategy ISOA optimized SVM[J]. Smart Power, 2023, 51 (2): 38- 44. |
[1] | 郑涛, 于佳旭, 眭程曦, 申由, 薛玉石, 武剑. 基于磁路耦合的Sen变压器差动保护方案[J]. 中国电力, 2025, 58(3): 108-118. |
[2] | 尹相国, 刘慧娟, 张冠育, 毛玉荣, 龚世玉. 基于VAE-WSVM的二次采样回路测试校核评估[J]. 中国电力, 2025, 58(3): 162-167. |
[3] | 宋许鹏, 杨小洋, 樊征臻. 基于电流合成矢量轨迹特性的双馈风电场主变压器差动保护[J]. 中国电力, 2025, 58(2): 9-21. |
[4] | 张旭, 王淳, 胡奕涛, 陈锐凯, 刘昆, 郭志东, 钟俊勋. 面向短时过载及长期轻载的配变侧储能配置与调度双层优化[J]. 中国电力, 2025, 58(1): 174-184. |
[5] | 彭寒梅, 尹棠, 肖千皓, 谭貌, 苏永新, 李辉. 高比例分布式电源配电网中低压柔性互联协调规划[J]. 中国电力, 2024, 57(8): 117-129. |
[6] | 马宏忠, 宣文婧, 朱沐雨, 陈悦林. 基于LWOA-LSTM的大容量锂电池SOC估计[J]. 中国电力, 2024, 57(6): 37-44. |
[7] | 刘贺千, 张健, 张海月, 杨洪达, 陈世玉, 申昱博, 王磊. 基于高频阻抗谱的干式空心电抗器匝间短路故障诊断方法[J]. 中国电力, 2024, 57(10): 218-224. |
[8] | 朱佳, 王峰, 李一泉, 焦邵麟, 徐晓春, 赵青春. 基于Tanimoto相似度的变压器零序差动保护约束方案[J]. 中国电力, 2023, 56(8): 193-199. |
[9] | 徐艳春, 范钟耀, 孙思涵, MI Lu. 基于去趋势分析的大规模双馈风电场送出变压器差动保护[J]. 中国电力, 2023, 56(7): 186-197. |
[10] | 薛飞, 李宏强, 李旭涛, 徐恒山. 基于LSTM神经网络的双馈风机控制参数辨识方法[J]. 中国电力, 2023, 56(6): 31-39. |
[11] | 黎燕, 程馨, 黄祖梁, 杨琢. 高可靠性三相多功能并网变换器研究[J]. 中国电力, 2023, 56(5): 172-181. |
[12] | 辛全金, 李晓华, 杨义, 李俊聪, 夏能弘. 基于冗余卷积编解码器的变压器噪声抑制[J]. 中国电力, 2023, 56(4): 112-118. |
[13] | 黄辉, 杨智豪, 魏建国, 邓辉, 刘诣. 变压器套管局部放电射频信号在外部空间的分布特征[J]. 中国电力, 2023, 56(4): 175-183. |
[14] | 曹赋禄, 赵晋斌, 潘超, 毛玲, 屈克庆. 基于DFFT的低压直流线路主动式接地故障定位方法[J]. 中国电力, 2023, 56(4): 184-191. |
[15] | 田宇, 黄婧, 谢枭, 王若昕, 沈丹青, 何丽娜, 杨凯帆, 陈汝科. 主动配电网无功补偿和OLTC鲁棒多目标优化配置[J]. 中国电力, 2023, 56(3): 94-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||